Skip to main content

Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1


Gallic acid production in a batch bioreactor was evaluated using as catalytic material the mouldy polyurethane solids (MPS) obtained from a solid-state fermentation (SSF) bioprocess carried out for tannase production by Aspergillus niger GH1 on polyurethane foam powder (PUF) with 5 % (v/w) of tannic acid as inducer. Fungal biomass, tannic acid consumption and tannase production were kinetically monitored. SSF was stopped when tannase activity reached its maximum level. Effects of washing with distilled water and drying on the tannase activity of MPS were determined. Better results were obtained with dried and washed MPS retaining 84 % of the tannase activity. Maximum tannase activity produced through SSF after 24 h of incubation was equivalent to 130 U/gS with a specific activity of 36 U/mg. The methylgallate was hydrolysed (45 %) in an easy, cheap and fast bioprocess (30 min). Kinetic parameters of tannase self-immobilized on polyurethane particles were calculated to be 5 mM and 04.1 × 10−2 mM/min for K M and V max, respectively. Results demonstrated that the MPS, with tannase activity, can be successfully used for the production of the antioxidant gallic acid from methyl-gallate substrate. Direct use of PMS to produce gallic acid can be advantageous as no previous extraction of enzyme is required, thus reducing production costs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Aguilar, C. N., Favela, C., Augur, C., & Viniegra-González, G. (2001). Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. Journal of Industrial Microbiology and Biotechnology, 26, 296–302.

    CAS  Article  Google Scholar 

  2. Lekha, P., & Lonsane, B. (1997). Production and application of tannin acyl hydrolase: state of the art. Advances in Applied Microbiology, 44, 215–260.

    CAS  Article  Google Scholar 

  3. Yu, X.-W., Li, Y.-Q., Zhou, S.-M., & Zheng, Y.-Y. (2007). Synthesis of propyl gallate by mycelium-bound tannase from Aspergillus niger in organic solvent. World Journal of Microbiology and Biotechnology, 23, 1091–1098.

    CAS  Article  Google Scholar 

  4. Sabu, A., Shegal Kiran, G., & Pandey, A. (2005). Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620. Food Technology and Biotechnology, 43, 133–138.

    CAS  Google Scholar 

  5. Coggon, P. G. N., & Sanderson, G. W. (1975). UK Patent, 1(380), 135.

    Google Scholar 

  6. Kar, B., Banerjee, R., & Bhattacharyya, B. C. (1999). Microbial production of gallic acid by modified solid state fermentation. Journal of Industrial Microbiology and Biotechnology, 23, 173–177.

    CAS  Article  Google Scholar 

  7. Treviño-Cueto, B., Luis, M., Contreras-Esquivel, J. C., Rodríguez, R., Aguilera, A., & Aguilar, C. N. (2007). Gallic acid and tannase accumulation using fungal solid state culture of a tannin-rich desert plant (Larrea tridentata Cov.). Bioresource Technology, 98, 721–724.

    Article  Google Scholar 

  8. Hadi, T.A. (1993). PhD thesis, Indian Institute of Technology, Kharagpur, IN.

  9. Chen, S. C., & Chung, K. T. (2000). Mutagenicity and antimutagenicity studies of tannic acid and its related compounds. Food and Chemical Toxicology, 38, 1–5.

    Article  Google Scholar 

  10. Garro, J. M., & Jollez, P. (1997). Canadian Patents, 215, 251.

    Google Scholar 

  11. Abdel-Naby, M. A., Sherif, A. A., El-Tanash, A. B., & Mankarios, A. T. (1999). Immobilization of Aspergillus oryzae tannase and properties of the immobilized enzyme. Journal of Applied Microbiology, 87, 108–114.

    CAS  Article  Google Scholar 

  12. Nagy, V., Toke, E. R., Keong, L. C., Szatzker, G., Ibrahim, D., Omar, I. C., Szakacs, G., & Poppe, L. (2006). Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. Journal of Molecular Catalysis B: Enzymatic, 39, 141–148.

    CAS  Article  Google Scholar 

  13. Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2006). Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis B: Enzymatic, 263, 8–13.

    Google Scholar 

  14. Rodriguez-Duran, L. V., Contreras-Esquivel, J. C., Rodriguez, R., Prado-Barragan, L. A., & Aguilar, C. N. (2011). Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor. Journal of Microbiology and Biotechnology, 21, 960–967.

    CAS  Article  Google Scholar 

  15. Makkar, H. P. S., Blummel, M., Borowy, N. K., & Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 61, 161–165.

    CAS  Article  Google Scholar 

  16. Aguilar, C., Augur, C., Viniegra-González, G., & Favela, E. (1999). A comparison of methods to determine tannin acyl hydrolase activity. Brazilian Archives of Biology and Technology, 42(3), 355–362.

    CAS  Google Scholar 

  17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    CAS  Article  Google Scholar 

  18. Aguilar, C. N., Favela-Torres, E., Viniegra-González, G., & Augur, C. (2002). Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus nigerAa-20. Applied Biochemistry and Biotechnology, 102–103, 407–414.

    Article  Google Scholar 

  19. Kumar, R., Sharma, J., & Singh, R. (2007). Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiological Research, 162, 384–390.

    CAS  Article  Google Scholar 

  20. Sharma, S., Agarwal, L., & Saxena, R. K. (2008). Purification, immobilization and characterization of tannase from Penicillium variable. Bioresource Technology, 99, 2544–2551.

    CAS  Article  Google Scholar 

  21. Sharma, S., Bhat, T. K., & Dawra, R. K. (1999). Immobilization and characterization of tannase from a metagenomic library and its use for removal of tannins from green tea infusion. World Journal of Microbiology and Biotechnology, 15, 673–677.

    CAS  Article  Google Scholar 

  22. Ramos, E. L., Mata-Gómez, M. A., Rodríguez-Durán, L. V., Belmares, R. E., Rodríguez-Herrera, R., & Aguilar, C. N. (2011). Catalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam. Applied Biochemistry and Biotechnology, 165, 1141–1151.

    CAS  Article  Google Scholar 

Download references


Authors thank the National Council for Science and Technology (CONACYT-Mexico) for the financial support. The present work was performed as part of a cooperative agreement between DIA-Universidad Autónoma de Coahuila (Mexico) and IBB-Universidade do Minho (Portugal) within a specific training stay undertaken at the DEB-UM. Part of the research was funded by a project SEP-CONACYT-CB-2011.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Cristóbal N. Aguilar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mata-Gómez, M., Mussatto, S.I., Rodríguez, R. et al. Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1. Appl Biochem Biotechnol 176, 1131–1140 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Tannase
  • Gallic acid
  • Methyl gallate
  • Mouldy polyurethane solids
  • State solid fermentation