Applied Biochemistry and Biotechnology

, Volume 176, Issue 4, pp 1114–1130 | Cite as

Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles

  • Ashani Samaratunga
  • Olena Kudina
  • Nurun Nahar
  • Andrey Zakharchenko
  • Sergiy Minko
  • Andriy Voronov
  • Scott W. Pryor


Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.


Immobilized enzymes Enzymatic hydrolysis Cellulase Enzyme recovery Response surface methodology Enzymogel 



Poly(acrylic acid)


International Union of Pure and Applied Chemistry


Response surface methodology


Analysis of variance


High-performance liquid chromatography


Dinitrosalicylic acid


Bovine serum albumin



Funding for this research was provided by the National Science Foundation (Arlington, VA) under grant numbers CBET 0966526 and CBET 0966574.

Supplementary material

12010_2015_1633_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)


  1. 1.
    Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews, 106, 4044–4098.CrossRefGoogle Scholar
  2. 2.
    García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: how to improve the efficiency? Renewable and Sustainable Energy Reviews, 15, 964–980.CrossRefGoogle Scholar
  3. 3.
    Wyman, C. E. (1994). Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technology, 50, 3–15.CrossRefGoogle Scholar
  4. 4.
    Ikeda, Y., Parashar, A., & Bressler, D. (2014). Highly retained enzymatic activities of two different cellulases immobilized on non-porous and porous silica particles. Biotechnology and Bioprocess Engineering, 19, 621–628.CrossRefGoogle Scholar
  5. 5.
    Liang, W., & Cao, X. (2012). Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization. Bioresource Technology, 116, 140–146.CrossRefGoogle Scholar
  6. 6.
    Ungurean, M., Paul, C., & Peter, F. (2013). Cellulase immobilized by sol–gel entrapment for efficient hydrolysis of cellulose. Biotechnology and Bioprocess Engineering, 36, 1327–1338.CrossRefGoogle Scholar
  7. 7.
    Bayramoglu, G., & Arica, M. Y. (2010). Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. Journal of Molecular Catalysis B: Enzymatic, 62, 297–304.CrossRefGoogle Scholar
  8. 8.
    Brittain, W. J., & Minko, S. (2007). A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry, 45, 3505–3512.CrossRefGoogle Scholar
  9. 9.
    Wang, X., Xu, J., Li, L., Wu, S., Chen, Q., Lu, Y., Ballauff, M., & Guo, X. (2010). Synthesis of spherical polyelectrolyte brushes by thermo-controlled emulsion polymerization. Macromolecular Rapid Communications, 31, 1272–1275.CrossRefGoogle Scholar
  10. 10.
    Kudina, O., Zakharchenko, A., Trotsenko, O., Tokarev, A., Ionov, L., Stoychev, G., Puretskiy, N., Pryor, S. W., Voronov, A., & Minko, S. (2014). Highly efficient phase boundary biocatalysis with enzymogel nanoparticles. Angewandte Chemie International Edition, 53, 483–487.CrossRefGoogle Scholar
  11. 11.
    Czeslik, C., Jackler, G., Steitz, R., & von Grünberg, H.-H. (2004). Protein binding to like-charged polyelectrolyte brushes by counterion evaporation. The Journal of Physical Chemistry B, 108, 13395–13402.CrossRefGoogle Scholar
  12. 12.
    Minko, S. (2006). Responsive polymer brushes. Journal of Macromolecular Science, 46, 397–420.CrossRefGoogle Scholar
  13. 13.
    Miletić, N., Nastasović, A., & Loos, K. (2012). Immobilization of biocatalysts for enzymatic polymerizations: possibilities, advantages, applications. Bioresource Technology, 115, 126–135.CrossRefGoogle Scholar
  14. 14.
    Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.CrossRefGoogle Scholar
  15. 15.
    Samaratunga, A., Kudina, O., Nahar, N., Zakharchenko, A., Minko, S., Voronov, A., & Pryor, S. W. (2015). Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles. Applied Biochemistry and Biotechnology, 175, 2872–2882.CrossRefGoogle Scholar
  16. 16.
    Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  17. 17.
    de Souza, C. J. A., Costa, D. A., Rodrigues, M. Q. R. B., dos Santos, A. F., Lopes, M. R., Abrantes, A. B. P., dos Santos Costa, P., Silveira, W. B., Passos, F. M. L., & Fietto, L. G. (2012). The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresource Technology, 109, 63–69.CrossRefGoogle Scholar
  18. 18.
    López-Linares, J. C., Romero, I., Cara, C., Ruiz, E., Castro, E., & Moya, M. (2014). Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. Journal of Chemical Technology & Biotechnology, 89, 104–110.CrossRefGoogle Scholar
  19. 19.
    Kumar, R., Singh, S., & Singh, O. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRefGoogle Scholar
  20. 20.
    Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.CrossRefGoogle Scholar
  21. 21.
    Jeng, W.-Y., Wang, N.-C., Lin, M.-H., Lin, C.-T., Liaw, Y.-C., Chang, W.-J., Liu, C.-I., Liang, P.-H., & Wang, A. H. J. (2011). Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 173, 46–56.CrossRefGoogle Scholar
  22. 22.
    Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30, 1458–1480.CrossRefGoogle Scholar
  23. 23.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.Google Scholar
  24. 24.
    Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M., & Minko, S. (2009). Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases, 4, FA45–FA49.CrossRefGoogle Scholar
  25. 25.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  26. 26.
    Zor, T., & Seliger, Z. (1996). Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Analytical Biochemistry, 236, 302–308.CrossRefGoogle Scholar
  27. 27.
    Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnology Progress, 23, 398–406.CrossRefGoogle Scholar
  28. 28.
    Tu, M., Zhang, X., Paice, M., MacFarlane, P., & Saddler, J. N. (2009). The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresource Technology, 100, 6407–6415.CrossRefGoogle Scholar
  29. 29.
    Jeya, M., Zhang, Y.-W., Kim, I.-W., & Lee, J.-K. (2009). Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresource Technology, 100, 5155–5161.CrossRefGoogle Scholar
  30. 30.
    Balsan, G., Astolfi, V., Benazzi, T., Meireles, M. A. A., Maugeri, F., Di Luccio, M., Dal Pra, V., Mossi, A. J., Treichel, H., & Mazutti, M. A. (2012). Characterization of a commercial cellulase for hydrolysis of agroindustrial substrates. Bioprocess and Biosystems Engineering, 35, 1229–1237.CrossRefGoogle Scholar
  31. 31.
    Ferreira, S., Duarte, A. P., Ribeiro, M. H. L., Queiroz, J. A., & Domingues, F. C. (2009). Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45, 192–200.CrossRefGoogle Scholar
  32. 32.
    Ho, K. M., Mao, X., Gu, L., & Li, P. (2008). Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir, 24, 11036–11042.CrossRefGoogle Scholar
  33. 33.
    Zhou, J. (2010). Immobilization of cellulase on a reversibly soluble-insoluble support: properties and application. Journal of Agricultural and Food Chemistry, 58, 6741–6746.CrossRefGoogle Scholar
  34. 34.
    Dwevedi, A., & Kayastha, A. M. (2009). Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresource Technology, 100, 2667–2675.CrossRefGoogle Scholar
  35. 35.
    Huang, X.-J., Chen, P.-C., Huang, F., Ou, Y., Chen, M.-R., & Xu, Z.-K. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic, 70, 95–100.CrossRefGoogle Scholar
  36. 36.
    Pal, A., & Khanum, F. (2011). Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochemisty, 46, 1315–1322.CrossRefGoogle Scholar
  37. 37.
    Gregg, D. J., & Saddler, J. N. (1996). Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51, 375–383.CrossRefGoogle Scholar
  38. 38.
    Figueira, J. D. A., Dias, F. F. G., Sato, H. H., & Fernandes, P. (2011). Screening of supports for the immobilization of β-glucosidase. Enzyme Research, 2011, 8.CrossRefGoogle Scholar
  39. 39.
    Singh, R., Zhang, Y.-W., Nguyen, N.-P.-T., Jeya, M., & Lee, J.-K. (2011). Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Applied Microbiology and Biotechnology, 89, 337–344.CrossRefGoogle Scholar
  40. 40.
    Yan, J., Pan, G., Li, L., Quan, G., Ding, C., & Luo, A. (2010). Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. Journal of Colloid and Interface Science, 348, 565–570.CrossRefGoogle Scholar
  41. 41.
    Yang, Y.-S., Zhang, T., Yu, S.-C., Ding, Y., Zhang, L.-Y., Qiu, C., & Jin, D. (2011). Transformation of geniposide into genipin by immobilized β-glucosidase in a two-phase aqueous-organic system. Molecules, 16, 4295–4304.CrossRefGoogle Scholar
  42. 42.
    Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57.CrossRefGoogle Scholar
  43. 43.
    Tan, I. S., & Lee, K. T. (2014). Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 184, 386–394.CrossRefGoogle Scholar
  44. 44.
    Zhou, Y., Pan, S., Wu, T., Tang, X., & Wang, L. (2013). Optimal immobilization of β-glucosidase into chitosan beads using response surface methodology. Electronic Journal of Biotechnology, 16, 1–13.CrossRefGoogle Scholar
  45. 45.
    Khan, S., Lindahl, S., Turner, C., & Karlsson, E. N. (2012). Immobilization of thermostable β-glucosidase variants on acrylic supports for biocatalytic processes in hot water. Journal of Molecular Catalysis B: Enzymatic, 80, 28–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ashani Samaratunga
    • 1
  • Olena Kudina
    • 2
  • Nurun Nahar
    • 1
  • Andrey Zakharchenko
    • 3
  • Sergiy Minko
    • 3
  • Andriy Voronov
    • 2
  • Scott W. Pryor
    • 1
  1. 1.Department of Agricultural and Biosystems EngineeringNorth Dakota State UniversityFargoUSA
  2. 2.Department of Coatings and Polymeric MaterialsNorth Dakota State UniversityFargoUSA
  3. 3.Nanostructured Materials LaboratoryUniversity of GeorgiaAthensUSA

Personalised recommendations