Applied Biochemistry and Biotechnology

, Volume 176, Issue 3, pp 742–757 | Cite as

Cuscuta chinensis Ameliorates Immunosuppression and Urotoxic Effect of Cyclophosphamide by Regulating Cytokines - GM-CSF and TNF-Alpha

  • Nidhi Raju
  • Kunnathur Murugesan Sakthivel
  • Narayanan Kannan
  • Venugopal Vinod Prabhu
  • Chandrasekaran GuruvayoorappanEmail author


Cancer is the leading cause of death worldwide. Cyclophosphamide (CTX) is commonly used as anticancer drug which causes toxicity by its reactive metabolites such as acroline and phosphoramide mustard. In this study, Cuscuta chinensis (C. chinensis) (family: Convolvulaceae) was assessed for ability to restore mice against CTX-induced toxicity. Coadministration of C. chinensis extract (10 mg/kg BW, IP, daily) for ten consecutive days reduced CTX-induced (25 mg/kg BW, IP, daily) toxicity. Treatment with C. chinensis extract significantly (p < 0.01) increased the relative organ weight and body weight. Moreover, administration of C. chinensis extract significantly increased bone marrow cellulatity and α-esterase activity in CTX-treated mice which suggested its protective role on the hematopoietic system. The GSH content was drastically reduced by CTX administration in urinary bladder which was enhanced by treatment with C. chinensis extract, indicating that preventing acroline-mediated tissue damage or cell toxicity and also the extract decreased the urinary bladder nitric oxide (NO) level which proves recovery over urinary tract injury associated with CTX treatment. The administration of C. chinensis extract decreased serum urea, creatinine, and bilirubin levels when compared to CTX-alone-treated group. Histopathological analysis of the urinary bladder of CTX-alone-treated group showed necrotic damage whereas the C. chinensis-treated group showed normal bladder architecture. The above data clearly demonstrates chemoprotective role of C. chinensis against CTX-induced toxicities by regulating antioxidant and inflammatory mediators.


Cyclophosphamide Cuscuta chinensis Chemoprotectant Antioxidants Inflammatory mediators 



The valuable support of Dr. Jannet Vennila, Director, School of Biotechnology and Health Sciences, Karunya University, is greatly acknowledged.

Conflict of Interest

The authors report no conflicts of interest.


  1. 1.
    Weinberg, R. A. (1996). How cancer arises? Scientific American, 275, 32–440.CrossRefGoogle Scholar
  2. 2.
    Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current advances and future directions. International Journal of Medical Sciences, 9, 193–199.CrossRefGoogle Scholar
  3. 3.
    Siegel, R. (2012). Cancer treatment and survivorship statistics. Ca Cancer Journal for Clinicians, 62(4), 220–241.CrossRefGoogle Scholar
  4. 4.
    Wilson, C.O., Beale, J.M., Block, J.H. (2011). Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry (11nd ed.) Lippincott Williams & Wilkins, Baltimore, MD, 43-45.Google Scholar
  5. 5.
    Balch, C. M., Houghton, A. N., Peters, L., De Vita, V. T., Hellman, S., & Rosenberg, S. A. (1993). Cancer: principles and practice of oncology (4th ed., pp. 1499–1542). Philadelphia PA: JB Lippinocott.Google Scholar
  6. 6.
    Grochow, L. B. (1996). Covalent DNA-binding drugs. In M. C. Perry (Ed.), The chemotherapy source book (pp. 297–299). Baltimore: Williams & Wilkins.Google Scholar
  7. 7.
    Monach, P., Arnold, L., & Merkel, P. (2010). Incidence and prevention of bladder toxicity from cyclophosphamide in the treatment of rheumatic diseases. Arthritis and Rheumatism, 62, 9–21.CrossRefGoogle Scholar
  8. 8.
    Dumontet, C., Drai, J., Thieblemont, C., Hequet, O., Espinouse, D., & Bouafia, F. (2001). The superoxide dismutase content in erythrocytes predicts short-term toxicity of high dose cyclophosphamide. British Journal of Haematology, 112, 405–409.CrossRefGoogle Scholar
  9. 9.
    Vinod Prabhu, V., & Guruvayoorappan, C. (2012). Evaluation of immunostimulant activity and chemoprotective effect of mangrove Rhizophora apiculata against cyclophosphamide induced toxicity in BALB/c mice. Immunopharmacology and Immunotoxicology, 34, 608–615.CrossRefGoogle Scholar
  10. 10.
    Pratheeshkumar, P., & Kuttan, G. (2010). Cardiospermum halicacabum inhibits cyclophosphamide induced immunosupression and oxidative stress in mice and also regulates iNOS and COX-2 gene expression in LPS stimulated macrophages. Asian Pacific Journal of Cancer Prevention, 11, 1245–1252.Google Scholar
  11. 11.
    Santos, A. A., Jr., Lealm, P. C., Edelweiss, M. I., Lopes, T. G., Calixto, J. B., Morrone, F. B., & Campos, M. M. (2010). Effects of the compounds MV8608 and MV8612 obtained from Mandevilla velutina in the model of hemorrhagic cystitis induced by cyclophosphamide in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 382, 399–407.CrossRefGoogle Scholar
  12. 12.
    Sakthivel, K. M., & Guruvayoorappan, C. (2014). Acacia ferruginea inhibits cyclophosphamide-induced immunosuppression and urotoxicity by modulating cytokines in mice. Journal of Immunotoxicology, 29, 1–10.Google Scholar
  13. 13.
    Hajimehdipoor, H., Kondori, B. M., Amin, G. R., Adib, N., Rastegar, H., & Shekarchi, M. (2012). Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection. Daru, 20(57), 1–6.Google Scholar
  14. 14.
    Sun, S. L., Guo, L., Ren, Y. C., Wang, B., Li, R. H., Qi, Y. S., Yu, H., Chang, N. D., Li, M. H., & Peng, H. S. (2014). Anti-apoptosis effect of polysaccharide isolated from the seeds of Cuscuta chinensis Lam on cardiomyocytes in aging rats. Molecular Biology Reports, 41, 6117–6124.CrossRefGoogle Scholar
  15. 15.
    Liao, J. C., Chang, W. T., Lee, M. S., Chiu, Y. J., Chao, W. K., Lin, Y. C., Lin, M. K., & Peng, W. H. (2014). Antinociceptive and anti-inflammatory activities of Cuscuta chinensis seeds in mice. American Journal of Chinese Medicine, 42, 223–242.CrossRefGoogle Scholar
  16. 16.
    Yen, F. L., Wu, T. H., Lin, L. T., & Lin, C. C. (2007). Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. Journal of Ethnopharmacology, 111, 123–128.CrossRefGoogle Scholar
  17. 17.
    Yen, F. L., Wu, T. H., Lin, L. T., Cham, T. M., & Lin, C. C. (2008). Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and Chemical Toxicology, 46, 1771–1777.CrossRefGoogle Scholar
  18. 18.
    Yang, L., Chen, Q., Wang, F., & Zhang, G. (2011). Antiosteoporotic compounds from seeds of Cuscuta chinensis. Journal of Ethnopharmacology, 135, 553–560.CrossRefGoogle Scholar
  19. 19.
    Prabhu, V. V., & Guruvayoorappan, C. (2012). Anti-inflammatory and anti-tumor activity of the marine mangrove Rhizophora apiculata. Journal of Immunotoxicology, 9, 341–352.CrossRefGoogle Scholar
  20. 20.
    Bancroft, J. D., & Cook, H. C. (1984). Manual of histological techniques (pp. 171–178). London: Churchill Livingston.Google Scholar
  21. 21.
    Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888.Google Scholar
  22. 22.
    Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite and (15 N) nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.CrossRefGoogle Scholar
  23. 23.
    Donald, R., Wybenga Giorgio, J. D., & Pileggi, V. J. (1971). Manual and automated methods for urea nitrogen measurement in whole serum. Clinical Chemistry, 17, 891–895.Google Scholar
  24. 24.
    Nicolini, A., Mancini, P., Ferrari, P., Anselmi, L., Tartarelli, G., Bonazzi, V., Carpi, A., & Giardino, R. (2004). Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomedicine and Pharmacotherapy, 58, 447–450.CrossRefGoogle Scholar
  25. 25.
    Singh, G., Fries, J. F., Williams, C. A., Zatarain, E., Spitz, P., & Bloch, D. A. (1991). Toxicity profiles of disease modifying antirheumatic drugs in rheumatoid arthritis. Journal of Rheumatology, 18, 188–194.Google Scholar
  26. 26.
    Lohrmann, H. P. (1984). The problem of permanent bone marrow damage after cytotoxic drug treatment. Oncology, 41, 180–184.CrossRefGoogle Scholar
  27. 27.
    Bernatsky, S., Clarke, A. E., & Suissa, S. (2008). Hematologic malignant neoplasms after drug exposure in rheumatoid arthritis. Archives of Internal Medicine, 168, 378–381.CrossRefGoogle Scholar
  28. 28.
    Rudra, P. K., & Krokan, H. E. (1999). Acrolein cytotoxicity and glutathione depletion in n-3 fatty acid sensitive- and resistant human tumor cells. Anticancer Research, 19, 461–469.Google Scholar
  29. 29.
    Arrigo, A. P. (1999). Gene expression and the thiol redox state. Free Radical Biology and Medicine, 27, 936–944.CrossRefGoogle Scholar
  30. 30.
    Kehrer, J. P., & Biswal, S. S. (2000). The molecular effects of acrolein. Toxicological Sciences, 57, 6–15.CrossRefGoogle Scholar
  31. 31.
    Van den Dobblesteen, D. J., Nobel, C. S., Schlegel, J., Cotgreave, I. A., Orrenius, S., & Slater, A. F. (1996). Rapid and specific efflux of reduced glutathione during apoptosis induced by anti-Fas/APO-1 antibody. Journal of Biological Chemistry, 271, 15420–15427.CrossRefGoogle Scholar
  32. 32.
    Horton, N. D., Biswal, S. S., Corrigan, L. L., Bratta, J., & Kehrer, J. P. (1999). Acrolein causes IκB-independent decreases in NF-κB activation in human lung adenocarcinoma (A549) cells. Journal of Biological Chemistry, 274, 9200–9206.CrossRefGoogle Scholar
  33. 33.
    Dole, M. G., Jasty, R., Cooper, M. J., Thompson, C. B., Nunez, G., & Castle, V. P. (1995). Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Research, 55, 2576–2582.Google Scholar
  34. 34.
    Manaloor, E. J., Neiman, R. S., Heilman, D. K., Albitar, M., Casey, T., Vattuone, T., Kotylo, P., & Orazi, A. (2000). Immunohistochemistry can be used to subtype acute myeloid leukemia in routinely processed bone marrow biopsy specimens. Comparison with flow cytometry. American Journal of Clinical Pathology, 113, 814–822.CrossRefGoogle Scholar
  35. 35.
    Gasson, J. C. (1991). Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood, 77, 1131–1145.Google Scholar
  36. 36.
    Dinarello, C. A. (2000). Interleukin-18, a proinflammatory cytokine. European Cytokine Network, 11, 483–486.Google Scholar
  37. 37.
    Ma, Q., & Kinneer, K. (2002). Chemoprotection by phenolic antioxidants. Inhibition of tumor necrosis factor alpha induction in macrophages. Journal of Biological Chemistry, 277, 2477–8244.CrossRefGoogle Scholar
  38. 38.
    de Oliveira Silveira, A. C., Leite, E. A., Melo, M. M., de Carvalho Ribeiro, A. F., Cassali, G. D., de Souza, C. M., Souza-Fagundes, E. M., Caldas, I. R., Araújo, M. S., Martins-Filho, O. A., de Oliveira, M. C., & Teixeira-Carvalho, A. (2012). Antitumor effectiveness and toxicity of cisplatin-loaded long-circulating and pH-sensitive liposomes against Ehrlich ascitic tumor. Experimental Biology and Medicine (Maywood, N.J.), 237, 973–84.CrossRefGoogle Scholar
  39. 39.
    Tarcic, N., Ovadia, H., Weiss, D. W., & Weidenfeld, J. (1998). Restraint stress- induced thymic involution and cell apoptosis are dependent on endogenous glucocorticoids. Journal of Neuroimmunology, 82, 40–46.CrossRefGoogle Scholar
  40. 40.
    Popa, I., Zubkova, I., Medvedovic, M., Romantseva, T., Mostowski, H., Boyd, R. L., & Zaitseva, M. (2007). Regeneration of the adult thymus is preceded by the expansion of K5 K8 epithelial cell progenitors and by increased expression of Trp63, cMyc and Tcf3 transcription factors in the thymic stroma. International Immunology, 19, 1249–1260.CrossRefGoogle Scholar
  41. 41.
    Malik, S. W., Myers, J. L., DeRemee, R. A., & Specks, U. (1996). Lung toxicity with cyclophosphamide use: two distinct patterns. American Journal of Respiratory and Critical Care Medicine, 154, 1851–1856.CrossRefGoogle Scholar
  42. 42.
    Limper, A. H. (2004). Chemotherapy-induced lung disease. Clinics in Chest Medicine, 25, 53–64.CrossRefGoogle Scholar
  43. 43.
    Limper, A. H., & Rosenow, E. C. (2000). Drug-induced pulmonary disease. In J. F. Murray & J. Nadel (Eds.), Textbook of respiratory medicine (pp. 1971–194). Philadelphia: W.B. Saunders Company, Inc.Google Scholar
  44. 44.
    Ishak, K. G., & Zimmerman, H. J. (1995). Morphologic spectrums of drug-induced liver disease. Gastroenterology Clinics of North America, 24, 759–786.Google Scholar
  45. 45.
    King, P. D., & Perry, M. C. (2001). Hepatotoxicity of chemotherapy. The Oncologist, 6, 162–176.CrossRefGoogle Scholar
  46. 46.
    Al-Yahya, A. A., Al-Majed, A. A., Gado, A. M., Daba, M. H., Al-Shabanah, O. A., & Abd-Allah, A. R. (2009). Acacia Senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity. Oxidative Medicine and Cellular Longevity, 2, 207–213.CrossRefGoogle Scholar
  47. 47.
    Moraes, J. P., Pereira, D. S., Matos, A. S., Santana, D. G., Santos, C. A., Estevam, C. S., Fakhouri, R., de Lucca Junior, W., & Camargo, E. A. (2013). The ethanol extract of the inner bark of Caesalpinia pyramidalis (Tul.) reduces urinary bladder damage during cyclophosphamide-induced cystitis in rats. Scientific World Journal, 20, 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nidhi Raju
    • 1
  • Kunnathur Murugesan Sakthivel
    • 1
  • Narayanan Kannan
    • 1
  • Venugopal Vinod Prabhu
    • 1
  • Chandrasekaran Guruvayoorappan
    • 1
    Email author
  1. 1.Department of BiotechnologyKarunya UniversityKarunya Nagar, CoimbatoreIndia

Personalised recommendations