Skip to main content

Advertisement

Log in

An Integrated In Silico Approach for the Structural and Functional Exploration of Lipocalin 2 and its Functional Insights with Metalloproteinase 9 and Lipoprotein Receptor-Related Protein 2

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recent evidence demonstrated that Lipocalin 2 (LCN2) is garnering interest from a wide spectrum as biomarker. Here, we present an in silico characterization of LCN2 belonging to prominent organisms focusing for their physicochemical and structural differences. We found significant variations in physicochemical properties between organisms and low sequence similarity based on their amino acid properties alone. However, we identified three main structurally distinct motif regions that are conserved among all variants. Further investigation was carried out to understand the functional insights of LCN2. We selected LCN2 sequence from Gallus gallus as an input query to identify unique scoring-framework based on computational tools and confidence scores of various putative associations. Among all ten proteins associated with LCN2; highest confidence of prediction were seen for the associations between LCN2 and metalloproteinase 9 (MMP9) and lipoprotein receptor-related protein 2 (LRP2) which play vital roles in tumor growth and iron transportation, respectively. We attempted to determine binding affinities of LCN2 with MMP9 and LRP2 through molecular modeling and docking. Selected docked models were examined for complex stability by GROMACS. Alteration of binding affinity between LCN2 with MMP9 and LRP2 proteins that we found in this study may provide new direction for future therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flower, D. R., North, A. C., & Sansom, C. E. (2000). The lipocalin protein family: structural and sequence overview. Biochimica et Biophysica Acta, 1482, 9–24.

    Article  CAS  Google Scholar 

  2. Akerstrom, B., & Logdeberg, L. (2006). In B. Akerstrom, N. Borregaard, D. A. Flower, & J. S. Salier (Eds.), Lipocalins (pp. 110–120). Georgetown: Landes Bioscience.

    Google Scholar 

  3. Ganfornina, M. D., Gutierrez, G., Bastiani, M., & Sanchez, D. (2000). A phylogenetic analysis of the lipocalin protein family. Molecular Biology Evolution, 17, 114–126.

    Article  CAS  Google Scholar 

  4. Pervais, S., & Brew, K. (1985). Homology of beta-lactoglobulin, serum retinol-binding protein and protein HC. Science, 228, 335–337.

    Article  Google Scholar 

  5. Igarashi, M., Nagata, A., Toh, H., Urade, H. I., & Hayaishi, M. (1992). Human brain prostaglandin D synthase has been evolutionarily differentiated from lipophilic-ligand carrier proteins. Proceedings of the National Academy of Sciences USA, 89, 5376–5380.

    Article  CAS  Google Scholar 

  6. Flower, D. R., North, A. C. T., & Attwood, T. K. (1993). Structural and sequence relationships in the lipocalin and related proteins. Protein Sciences, 2, 753–761.

    Article  CAS  Google Scholar 

  7. Flower, D. R. (1996). The lipocalin protein family: structure and function. Biochemistry Journal, 318, 1–14.

    CAS  Google Scholar 

  8. Bishop, R. E. (2000). The bacterial lipocalin. Biochimica et Biophysica Acta, 1482, 73–83.

    Article  CAS  Google Scholar 

  9. Flo, T. H., Smith, K. D., Sato, S., Rodriguez, D. J., Holmes, M. A., Strong, R. K., Akira, S., & Aderem, A. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature, 432, 917–921.

    Article  CAS  Google Scholar 

  10. Goetz, D. H., Holmes, M. A., Borregaard, N., Bluhm, M. E., Raymond, K. N., & Strong, R. K. (2002). The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Molecular Cell, 10, 1033–1043.

    Article  CAS  Google Scholar 

  11. Fluckinger, M., Haas, H., Merschak, P., Glasgow, B. J., & Redl, B. (2004). Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrobial Agents Chemotherapy, 48, 3367–3372.

    Article  CAS  Google Scholar 

  12. Bratt, T. (2000). Lipocalins and cancer. Biochimica et Biophysica Acta, 1482, 318–326.

    Article  CAS  Google Scholar 

  13. Rodvold, J. J., Mahadevan, N. R., & Zanetti, M. (2012). Lipocalin 2 in cancer: when good immunity goes bad. Cancer Letter, 316, 132–138.

    Article  CAS  Google Scholar 

  14. Pauli, I., Timmers, L. F. S. M., Caceres, R. A., Botelho, M., Soares, P., & De Azevedo, W. F., Jr. (2008). In silico and in vitro: identifying new drugs. Current Drug Targets, 9, 1054–1061.

    Article  CAS  Google Scholar 

  15. Yan, L., Borregaard, N., Kjeldsen, L., & Moses, M. A. (2001). The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL), modulation of MMP-9 activity by NGAL. Journal of Biological Chemistry, 276, 37258–37265.

    Article  CAS  Google Scholar 

  16. Gupta, K., Shukla, M., Cowland, J. B., Malemud, C. J., & Haqqi, T. M. (2007). Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis and Rheumatism, 56, 3326–3335.

    Article  CAS  Google Scholar 

  17. Berger, T., Cheung, C.C., Elia, A.J., & Mak, T.W. (2010). Disruption of the Lcn2 gene in mice suppresses primary mammary tumor formation but does not decrease lung metastasis. Proceedings of the National Academy of Sciences, U.S.A., 16. doi:10.1073/pnas.1000101107.

  18. Lin, C. W., Tseng, S. W., Yang, S. F., Ko, C. P., Lin, C. H., Wei, L. H., Chien, M. H., & Haieh, Y. S. (2012). Role of lipocalin 2 and its complex with matrix metalloproteinase-9 in oral cancer. Oral Diseases, 18, 734–740.

    Article  CAS  Google Scholar 

  19. Stockwell, B. R. (2004). Exploring biology with small organic molecules. Nature, 432, 846–854.

    Article  CAS  Google Scholar 

  20. Hall, S. E. (2006). Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discovery Today, 11, 495–502.

    Article  CAS  Google Scholar 

  21. Chue, J., & Smith, C. A. (2011). Sex determination and sexual differentiation in the avian model. FEBS Journal, 278, 1027–1034.

    Article  CAS  Google Scholar 

  22. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology Evolution, 4, 406–425.

    CAS  Google Scholar 

  23. Nei, M., & Zhang, J. (2006). Evolutionary distance: estimation. Encyclopaedia Life Science, 1–3. doi:10.1038/npg.els.0005108.

  24. Guo, A. Y., Zhu, Q. H., Chen, X., & Luo, J. C. (2007). GSDS: a gene structure display server. Yi Chuan, 29, 1023–1026.

    Article  CAS  Google Scholar 

  25. Gasteiger, E. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa: Humana.

    Chapter  Google Scholar 

  26. Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4, 155–161.

    Article  CAS  Google Scholar 

  27. Ikai, A. J. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88, 1895–1898.

    CAS  Google Scholar 

  28. Sahay, A., & Shakya, M. (2010). In silico analysis and homology modelling of antioxidant proteins of spinach. Journal of Proteomics and Bioinformatics, 3, 148–154.

    Article  CAS  Google Scholar 

  29. Buchan, D.W.A., Ward, S. M., Lobley, A. E., Nugent, T.C.O., Bryson, K., & Jones, D.T. (2010). Protein annotation and modelling servers at University College London. Nucleic Acids Research, 1–6. doi:10.1093/nar/gkq427.

  30. Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11, 681–684.

    CAS  Google Scholar 

  31. Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Predication of protein subcellular localization. Protein Structure Function and Bioinformatices, 64, 643–651.

    Article  CAS  Google Scholar 

  32. Petersen, T. N., Brunak, S., Von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  33. Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., & Sali, A. (2006). Comparative protein structure modeling with MODELLER. Current protocols in bioinformatics. Current Protocols in Bioinformatics, 15, 5.6.1–5.6.30.

    Article  Google Scholar 

  34. Helen, B. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (1997). The protein data bank. Nucleic Acids Research, 8, 235–242.

    Google Scholar 

  35. McGinnis, S., & Madden, L. T. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32, W20–W25.

    Article  CAS  Google Scholar 

  36. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8, 477–486.

    Article  CAS  Google Scholar 

  37. Shen, M. Y., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Sciences, 15, 2507–2524.

    Article  CAS  Google Scholar 

  38. Vriend, G. (1990). What if: a molecular modeling and drug design program. Journal of Molecular Graph, 8, 52–56.

    Article  CAS  Google Scholar 

  39. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and empirical binding free energy. Function Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  40. Hetenyi, C., & Spoel, V. D. (2002). Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sciences, 11, 1729–1737.

    Article  CAS  Google Scholar 

  41. Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2006). Protein-ligand docking: current status and future challenges. Proteins, 65, 15–26.

    Article  CAS  Google Scholar 

  42. Huey, R., Morris, G. M., Olson, A. J., & Goodsell, D. S. (2007). A semi empirical free energy force field with charge-based desolvation. Journal of Computer Chemistry, 28, 145–152.

    Article  Google Scholar 

  43. Dutta, A., Katarkar, A., & Chaudhuri, K. (2013). In-silico structural and functional characterization of a V. cholerae O395 hypothetical protein containing a PDZ1 and an uncommon protease domain. PLoS ONE, 8, 1–12.

    Google Scholar 

  44. Schuttelkopf, A. W., & Aalten, D. M. F. V. (2004). PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallography, 60, 1355–1363.

    Google Scholar 

  45. Berendsen, H. J. C., Van der Spoel, R. D., & Drunen, V. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91, 43–56.

    Article  CAS  Google Scholar 

  46. Spoel, V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.

    Article  Google Scholar 

  47. Fan, H., & Mark, A. E. (2003). Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sciences, 13, 211–220.

    Article  Google Scholar 

  48. Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., Holmes, I. H., Schindler, J. F., Unkefer, C. J., & Terwilliger, T. C. (1999). Haloalkane dehalogenase: structure of a Rhodococcus enzyme. Biochemistry, 38, 16105–16114.

    Article  CAS  Google Scholar 

  49. George, P. D. C., & Nagasundaram, N. (2014). Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphismsin ERCC1-XPF heterodimer. Applied Biochemistry and Biotechnology, 172, 1265–1281.

    Article  Google Scholar 

  50. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins, 12, 345–364.

    Article  CAS  Google Scholar 

  51. Rokas, A., & Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in Ecology & Evolution, 15, 454–459.

    Article  Google Scholar 

  52. Krem, M. M., & Di Cera, E. (2001). Molecular markers of serine protease evolution. EMBO Journal, 20, 3036–3045.

    Article  CAS  Google Scholar 

  53. Sanchez, D., Ganfornina, M. D., Gutierrez, G., Christine, A., & Marin, A. (2003). Exon-intron structure and evolution of the lipocalin gene family. Molecular Biology Evolution, 20, 775–783.

    Article  CAS  Google Scholar 

  54. Singh, R., & Saha, M. (2003). Identifying structural motifs in proteins. Pacific Symposium on Biocomputing, 228–239.

  55. North, A. C. T. (1989). Three-dimensional arrangement of conserved amino acid residues in a superfamily of specific ligand-binding proteins. International Journal of Biological Macromolecules, 11, 56–58.

    Article  CAS  Google Scholar 

  56. Redl, B. (2000). Human tear lipocalin. Biochimica et Biophysica Acta, 1482, 241–248.

    Article  CAS  Google Scholar 

  57. Mamathambika, B. S., & Bardwell, J. C. (2008). Disulfide linked protein folding pathways. Annual Review of Cell Development Biology, 28, 211–235.

    Article  Google Scholar 

  58. Sivakumar, K., Balaji, S., & Gangaradhakrishnan. (2007). In-silico characterization of antifreeze proteins using computational tools and servers. Journal of Chemical Sciences, 119, 571–579.

    Article  CAS  Google Scholar 

  59. Roy, S., Maheshwari, N., Chauhan, R., Sen, N. K., & Sharma, A. (2011). Structure prediction and functional characterization of secondary metabolite proteins of Ocimum. Bioinformation, 6, 315–319.

    Article  Google Scholar 

  60. Prabu, G., Thirugnanasambantham, K., & Mandal, A. K. A. (2012). Structural and docking studies of a nucleoside diphosphate kinase 1 (CsNDPK1) from tea [Camellia sinensis (L.) O. Kuntze]. Applied Biochemistry and Biotechnology, 168, 1907–1916.

    Article  CAS  Google Scholar 

  61. Johnson, K. A. (2009). The standard of perfection: thoughts about the laying hen model of ovarian cancer. Cancer Prevention Research, 2, 97–99.

    Article  CAS  Google Scholar 

  62. Choi, S., & Myers, J. N. (2008). Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. Journal of Dental Research, 87, 14–32.

    Article  CAS  Google Scholar 

  63. Choi, J. W., Ahn, S. E., Rengaraj, D., Seo, H. W., Lim, W., Song, G., & Han, J. Y. (2011). Matrix metalloproteinase 3 is a stromal marker for chicken ovarian cancer. Oncology Letters, 2, 1047–1051.

    CAS  Google Scholar 

  64. Hakim, A. A., Barry, C. P., Barnes, H. J., Anderson, K. E., Petitte, J., Whitaker, R., Lancaster, J. M., Wenham, R. M., & Carver, D. K. (2009). Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras and HER-2/neu. Cancer Prevention Research, 2, 114–121.

    Article  CAS  Google Scholar 

  65. Lim, R., Ahmed, N., Borregaard, N., Riley, C., Wafai, R., Thompson, E. W., Quinn, M. A., & Rice, G. E. (2007). Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. International Journal of Cancer, 120, 2426–2434.

    Article  CAS  Google Scholar 

  66. Moniaux, N., Chakraborty, S., Yalniz, M., Gonzalez, J., Shostrom, V. K., Standop, J., Lele, S. M., Ouellette, M., et al. (2008). Early diagnosis of pancreatic cancer: neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Brazilian Journal of Cancer, 98, 1540–1547.

    Article  CAS  Google Scholar 

  67. Sia, A. K., Allred, B. E., & Raymond, K. N. (2012). Customized siderocalins for host defense and beyond. Current Opinion in Chemical Biology, 17, 150–157.

    Article  Google Scholar 

  68. Zheng, G. (1994). Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpha 2MR, and the receptor-associated protein (RAP). Journal of Histochemistry & Cytochemistry, 42, 531–542.

    Article  CAS  Google Scholar 

  69. Yochem, J., & Greenwald, I. A. (1993). Proceedings of the National Academy of Sciences USA, 90, 4572–4576.

    Article  CAS  Google Scholar 

  70. Yochem, J., Tuck, S., Greenwald, I., & Han, M. (1999). A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development, 126, 597–606.

    CAS  Google Scholar 

  71. Hermann, M., Seif, F., Schneider, W. J., & Ivessa, N. E. (1997). Estrogen dependence of synthesis and secretion of apolipoprotein B-containing lipoproteins in the chicken hepatoma cell line, LMH-2A. Journal of Lipid Research, 38, 1308–1317.

    CAS  Google Scholar 

  72. Hvidberga, V., Jacobsena, C., Strongb, R. K., Cowlandc, J. B., Moestrupa, S. K., & Borregaardc, N. (2005). The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Letters, 579, 773–777.

    Article  Google Scholar 

  73. Plieschnig, A., Gensberger, E. T., Bajari, T. M., Schneider, W. J., & Hermanna, M. (2012). Renal LRP2 expression in man and chicken is estrogen-responsive. Gene, 508, 49–59.

    Article  CAS  Google Scholar 

  74. Gerlt, J. A., Kreevoy, M. M., Cleland, W. W., & Frey, P. A. (1997). Understanding enzymic catalysis: the importance of short, strong hydrogen bonds. Chemistry and Biology, 4, 259–267.

    Article  CAS  Google Scholar 

  75. Ruiz, D. G., & Gohlke, H. (2006). Targeting protein–protein interactions with small molecules: challenges and perspectives for computational binding epitope detection and ligand finding. Current Medicinal Chemistry, 13, 2607–2625.

    Article  Google Scholar 

  76. Torti, S. V., & Torti, F. M. (2013). Iron and cancer: more ore to be mined. Nature Reviews Cancer, 13, 342–355.

    Article  CAS  Google Scholar 

  77. Lipinski, C., & Hopkins, A. (2004). Navigating chemical space for biology and medicine. Nature, 432, 855–861.

    Article  CAS  Google Scholar 

  78. Harris, C. J., & Stevens, A. P. (2006). Chemogenomics: structuring the drug discovery process to gene families. Drug Discovery Today, 11, 880–888.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Golden Seed Project (No. PJ009927), Republic of Korea; hence the authors are thankful to this organization.

Conflict of Interests

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Kee Jeong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The distribution of Exon and upstream regions in the LCN2 from selected organisms. (JPEG 160 kb)

Supplementary Fig. 2

The Ramachandran Plot for quality check of the LCN2 model of Gallus gallus. Regions A, B, L as most favored (89.9 %), additional allowed regions are a, b, l, p (7.2 %), and residuals are in the disallowed regions 2.2 %. The R factor finds less than 16 %. (JPEG 144 kb)

Supplementary Fig. 3

Modeled LRP2 protein of Gallus gallus using modeler. (JPEG 94 kb)

Supplementary Fig. 4

Ramchandran plot showing different regions of modeled LRP2 sourced from Gallus gallus. (JPEG 139 kb)

Supplementary Fig. 5

Modeled MMP-9 protein of Gallus gallus using modeler. (JPEG 106 kb)

Supplementary Fig. 6

Ramchandran plot showing different regions of modeled MMP-8 sourced from Gallus gallus. (JPEG 160 kb)

Supplementary Table 1

The percentage of amino acid residues in LCN2 of the selected organisms were annotated using CLC WorkBench tool. (DOCX 22 kb)

Supplementary Table 2

In silico predication of the LCN2 secondary structural. (DOCX 20 kb)

Supplementary Table 3

Association of functional protein partners of LCN2 with their score summary calculated through STRING network tool (DOCX 16 kb)

Supplementary Table 4

QMEAN-4 global scores for homologous model of LCN2, LRP2 and MMP9 from Gallus gallus. (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Sodhi, S.S., Kim, J.H. et al. An Integrated In Silico Approach for the Structural and Functional Exploration of Lipocalin 2 and its Functional Insights with Metalloproteinase 9 and Lipoprotein Receptor-Related Protein 2. Appl Biochem Biotechnol 176, 712–729 (2015). https://doi.org/10.1007/s12010-015-1606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1606-2

Keywords

Navigation