Skip to main content

Molecular Cloning and Differential Expression of Cytosolic Class I Small Hsp Gene Family in Pennisetum glaucum (L.)


Small heat shock protein (Hsp) family genes have been reported in several plant species that function as molecular chaperones to protect proteins from being denatured in extreme conditions. As a first step towards the isolation and characterization of genes that contribute to combating abiotic stresses particularly heat stress, construction and screening of the subtracted complementary DNA (cDNA) library is reported here. In this study, a subtractive heat stress cDNA library was constructed that was used to isolate members of small Hsps (sHsps) using PgsHsp17.9A gene as a probe. As a result, a total of 150 cDNA clones were isolated from the subtracted cDNA library screening, leading to 121 high-quality expressed sequence tags (ESTs), with an average size of 450 bp, comprising of 15 contigs, and majority of these isolated sHsp genes belong to cytosolic class I (CI) family. In silico sequence analysis of CI-sHsp family genes revealed that the length of sHsp proteins varied from 151 to 159 amino acids and showed large variation in isoelectric point value (5.03 to 10.05) and a narrow range of molecular weight (16.09 to 17.94 kDa). The real-time PCR results demonstrated that CI-sHsp genes are differentially expressed in Pennisetum leaves under different abiotic stress conditions particularly at high temperature. The results presented in this study provide basic information on PgCI-sHsp family genes and form the foundation for future functional studies of these genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3



Small heat shock protein


Alpha crystallin domain


Pennisetum glaucum


Cytosolic class I


  1. 1.

    Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244.

    Article  CAS  Google Scholar 

  2. 2.

    Tyedmers, J., Mogk, A., & Bukau, B. (2010). Cellular strategies for controlling protein aggregation. Nature Reviews Molecular Cell Biology, 11, 777–788.

    Article  CAS  Google Scholar 

  3. 3.

    Hartl, F. U., Bracher, A., & Hayer-Hartl, M. (2011). Molecular chaperones in protein folding and proteostasis. Nature, 475, 324–332.

    Article  CAS  Google Scholar 

  4. 4.

    Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244–252.

    Article  CAS  Google Scholar 

  5. 5.

    de Jong, W. W., Caspers, G. J., & Leunissen, J. A. (1998). Genealogy of the alpha-crystallin-small heat-shock protein super family. International Journal of Biological Macromolecules, 22, 151–162.

    Article  Google Scholar 

  6. 6.

    Franck, E., Madsen, O., van Rheede, T., Ricard, G., Huynen, M. A., & de Jong, W. W. (2004). Evolutionary diversity of vertebrate small heat shock proteins. Journal of Molecular Evolution, 59, 792–805.

    Article  CAS  Google Scholar 

  7. 7.

    Poulain, P., Gelly, J. C., & Flatters, D. (2010). Detection and architecture of small heat shock protein monomers. PLoS One, 5, e9990.

    Article  Google Scholar 

  8. 8.

    Bondino, H. G., Valle, E. M., & Ten Have, A. (2012). Evolution and functional diversification of the small heat shock protein/α-crystallin family in higher plants. Planta, 235, 1299–1313.

    Article  CAS  Google Scholar 

  9. 9.

    Borges, J. C., Cagliari, T. C., & Ramos, C. H. (2007). Expression and variability of molecular chaperones in the sugarcane expressome. Journal of Plant Physiology, 164, 505–513.

    Article  CAS  Google Scholar 

  10. 10.

    Waters, E. R., Aevermann, B. D., & Sanders-Reed, Z. (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress & Chaperones, 13, 127–142.

    Article  CAS  Google Scholar 

  11. 11.

    Sarkar, N. K., Kim, Y. K., & Grover, A. (2009). Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 10, 393.

    Article  Google Scholar 

  12. 12.

    Waters, E. R. (1995). The molecular evolution of the small heat-shock proteins in plants. Genetics, 141, 785–795.

    CAS  Google Scholar 

  13. 13.

    Hsieh, M. H., Chen, J. T., Jinn, T. L., Chen, Y. M., & Lin, C. Y. (1992). A class of soybean low molecular weight heat shock proteins: immunological study and quantitation. Plant Physiology, 99, 1279–1284.

    Article  CAS  Google Scholar 

  14. 14.

    Charng, Y. Y., Liu, H. C., Liu, N. Y., Hsu, F. C., & Ko, S. S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology, 140, 1297–1305.

    Article  CAS  Google Scholar 

  15. 15.

    Hamilton, E. W., & Heckathorn, S. A. (2001). Mitochondrial adaptations to NaCl Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiology, 126, 1266–1274.

    Article  CAS  Google Scholar 

  16. 16.

    Sato, Y., & Yokoya, S. (2008). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27, 329–334.

    Article  CAS  Google Scholar 

  17. 17.

    Sun, W., Van Montagu, M., & Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta, 1577, 1–9.

    Article  CAS  Google Scholar 

  18. 18.

    Weston, D. J., Karve, A. A., Gunter, L. E., Jawdy, S. A., Yang, X., Allen, S. M., & Wullschleger, S. D. (2011). Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max. Plant, Cell and Environment, 34, 1488–1506.

    Article  CAS  Google Scholar 

  19. 19.

    Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., & Schöffl, F. (2006). Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Molecular Biology, 61, 733–746.

    Article  CAS  Google Scholar 

  20. 20.

    Waters, E. R., Lee, G. J., & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. Journal of Experimental Botany, 47, 325–338.

    Article  CAS  Google Scholar 

  21. 21.

    Wehmeyer, N., & Vierling, E. (2000). The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests general protective role in desiccation tolerance. Plant Physiology, 122, 1099–1108.

    Article  CAS  Google Scholar 

  22. 22.

    Kotak, S., Vierling, E., Baumlein, H., & von Koskull-Doring, P. (2007). A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell, 19, 182–195.

    Article  CAS  Google Scholar 

  23. 23.

    Yeh, C. H., Chang, P. F. L., Yeh, K. W., Lin, W. C., Chen, Y. M., & Lin, C. Y. (1997). Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proceedings of the National Academy of Sciences of the United States of America, 94, 10967–10972.

    Article  CAS  Google Scholar 

  24. 24.

    Soto, A., Allona, I., Collada, C., Guevara, M. A., Casado, R., Rodriguez-Cerezo, E., Aragoncillo, C., & Gomez, L. (1999). Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiology, 120, 521–528.

    Article  CAS  Google Scholar 

  25. 25.

    Song, N. H., & Ahn, Y. J. (2011). DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. Nature Biotechnology, 28, 698–704.

    CAS  Google Scholar 

  26. 26.

    Jiang, C., Xu, J., Zhang, H., Zhang, X., Shi, J., Li, M., & Ming, F. (2009). A cytosolic class I small heat shock protein, RcHSP17.8, of Rosa chinensis confers resistance to a variety of stresses to Escherichia coli, yeast and Arabidopsis thaliana. Plant, Cell and Environment, 32, 1046–1059.

    Article  CAS  Google Scholar 

  27. 27.

    Harndahl, U., Hall, R. B., Osteryoung, K. W., Vierling, E., Bornman, J. F., & Sundby, C. (1999). The chloroplast small heat shock protein undergoes oxidation-dependent conformational changes and may protect plants from oxidative stress. Cell Stress & Chaperones, 4, 129–138.

    Article  CAS  Google Scholar 

  28. 28.

    Ahn, Y. J., & Zimmerman, J. L. (2006). Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell and Environment, 29, 95–104.

    Article  CAS  Google Scholar 

  29. 29.

    Mishra, R. N., Reddy, P. S., Nair, S., Markandeya, G., Reddy, A. R., Sopory, S. K., & Reddy, M. K. (2007). Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetumglaucum seedlings. Plant Molecular Biology, 64, 713–732.

    Article  CAS  Google Scholar 

  30. 30.

    Chomczynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162, 156–159.

    Article  CAS  Google Scholar 

  31. 31.

    Reddy, P. S., Nair, S., Mallikarjuna, G., Kaul, T., Markandeya, G., Sopory, S. K., & Reddy, M. K. (2008). A high-throughput, low-cost method for the preparation of “sequencing-ready” phage DNA template. Analytical Biochemistry, 376, 258–261.

    Article  CAS  Google Scholar 

  32. 32.

    Ewing, B., & Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186–194.

    Article  CAS  Google Scholar 

  33. 33.

    Gordon, D., Abajian, C., & Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Research, 8, 195–202.

    Article  CAS  Google Scholar 

  34. 34.

    Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30, e36.

    Article  Google Scholar 

  35. 35.

    Roy, N. V., Paepe, A. D., & Speleman, F. (2003). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.1–0034.11.

    Google Scholar 

  36. 36.

    Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., & Millar, A. H. (2004). Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell, 16, 241–256.

    Article  CAS  Google Scholar 

  37. 37.

    Joshi, C. P. (1987). An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Research, 15, 6643–6653.

    Article  CAS  Google Scholar 

  38. 38.

    Jeffares, D. C., Penkett, C. J., & Bahler, J. (2008). Rapidly regulated genes are intron poor. Trends in Genetics, 24, 375–378.

    Article  CAS  Google Scholar 

  39. 39.

    Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 579–620.

    Article  CAS  Google Scholar 

  40. 40.

    Kappe, G., Leunissen, J. A., & de Jong, W. W. (2002). Evolution and diversity of prokaryotic small heat shock proteins. Progress in Molecular and Subcellular Biology, 28, 1–17.

    Article  CAS  Google Scholar 

  41. 41.

    van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C., & Vierling, E. (2001). Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural and Molecular Biology, 8, 1025–1030.

    Article  Google Scholar 

  42. 42.

    Caspers, G. J., Leunissen, J. A., & de Jong, W. W. (1995). The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. Journal of Molecular Evolution, 40, 238–248.

    Article  CAS  Google Scholar 

  43. 43.

    Tranbarger, T. J., & Misra, S. (1996). The molecular characterization of a set of cDNAs differentially expressed during Douglas-fir germination and early seedling development. Physiologia Plantarum, 95, 456–464.

    Article  Google Scholar 

  44. 44.

    Ohta, T. (1991). Multigene families and the evolution of complexity. Journal of Molecular Evolution, 33, 34–41.

    Article  CAS  Google Scholar 

  45. 45.

    Reddy, P.S., Kavi Kishor, P.B., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., Reddy, M.K., Sreenivasulu, N. (2014). Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development. PLoS One, 4, e89125.

  46. 46.

    Krishna, P., & Gloor, G. (2001). The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress & Chaperones, 6, 238–246.

    Article  CAS  Google Scholar 

  47. 47.

    Nover, L., Bharti, K., Doring, P., Mishra, S. K., Ganguli, A., & Scharf, K. D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones, 6, 177–189.

    Article  CAS  Google Scholar 

  48. 48.

    Guan, J. C., Jinn, T. L., Yeh, C. H., Feng, S. P., Chen, Y. M., & Lin, C. Y. (2004). Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Molecular Biology, 56, 795–809.

    Article  CAS  Google Scholar 

  49. 49.

    Schoffl, F., Prandl, R., & Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiology, 117, 1135–1141.

    Article  CAS  Google Scholar 

Download references


We thank Prof. Kavi Kishor for critical reading of the manuscript. This work was supported in part by a research grant from the Department of Biotechnology (Ministry of Science and Technology, Government of India) to MKR. PSR acknowledges the Department of Science and Technology, Govt. of India, New Delhi, for financial support through the INSPIRE Faculty Fellowship Award Grant No. IFA-LSPA-06. This work was undertaken as part of the CGIAR Research Program on Dryland Cereals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to Palakolanu Sudhakar Reddy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reddy, P.S., Sharma, K.K., Vadez, V. et al. Molecular Cloning and Differential Expression of Cytosolic Class I Small Hsp Gene Family in Pennisetum glaucum (L.). Appl Biochem Biotechnol 176, 598–612 (2015).

Download citation


  • Pennisetum glaucum
  • High temperature stress
  • CI-sHsp gene family
  • Library screening
  • Real-time PCR