Skip to main content
Log in

Bioremediation of Petrochemical Wastewater Containing BTEX Compounds by a New Immobilized Bacterium Comamonas sp. JB in Magnetic Gellan Gum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated the bioremediation of petrochemical wastewater containing BTEX compounds by immobilized Comamonas sp. JB cells. Three kinds of magnetic nanoparticles were evaluated as immobilization supports for strain JB. After comparison with Fe3O4 and a-Fe2O3 nanoparticles, r-Fe2O3 nanoparticle was selected as the optimal immobilization support. The highest biodegradation activity of r-Fe2O3-magnetically immobilized cells was obtained when the concentration of r-Fe2O3 nanoparticle was 120 mg L−1. Additionally, the recycling experiments demonstrated that the degradation activity of r-Fe2O3-magnetically immobilized cells was still high and led to less toxicity than untreated wastewater during the eight recycles. qPCR suggested the concentration of strain JB in r-Fe2O3-magnetically immobilized cells was evidently increased after eight cycles of degradation experiments. These results supported developing efficient biocatalysts using r-Fe2O3-magnetically immobilized cells and provided a promising technique for improving biocatalysts used in the bioremediation of not only petrochemical wastewater but also other hazardous wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prenafeta-Boldú, F. X., Vervoort, J., Grotenhuis, J. T. C., & van Groenestijn, J. W. (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied and Environmental Microbiology, 68, 756–762.

    Article  Google Scholar 

  2. Saeed, T., & Al Mutairi, M. (1999). Chemical composition of the water- soluble fraction of the leaded gasolines in seawater. Environmental International, 25, 117–129.

    Article  CAS  Google Scholar 

  3. Littlejohns, J. V., & Daugulis, A. J. (2008). Kinetics and interactions of BTEX compounds during degradation by a bacterial consortium. Process Biochemistry, 43, 1068–1076.

    Article  CAS  Google Scholar 

  4. Costa, A. S., Romão, L. P., Araújo, B. R., Lucas, S. C., Maciel, S. T., Wisniewski, A., Jr., & Alexandre, M. R. (2012). Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresource Technology, 105, 31–39.

    Article  CAS  Google Scholar 

  5. Dean, B. J. (1985). Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutation Research, 154, 153–181.

    Article  CAS  Google Scholar 

  6. Kim, J. M., Le, N. T., Chung, B. S., Park, J. H., Bae, J. W., Madsen, E. L., & Jeon, C. O. (2008). Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Applied and Environmental Microbiology, 74, 7313–7320.

    Article  CAS  Google Scholar 

  7. Chakraborty, R., O’Connor, S. M., Chan, E., & Coates, J. D. (2005). Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas strain RCB. Applied and Environmental Microbiology, 71, 8649–8655.

    Article  CAS  Google Scholar 

  8. Kim, D., Kim, Y. S., Kim, S. K., Kim, S. W., Zylstra, G. J., Kim, Y. M., & Kim, E. (2002). Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Applied and Environmental Microbiology, 68, 3270–3278.

    Article  CAS  Google Scholar 

  9. Shinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., Yurimoto, H., & Kato, N. (2004). Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology, 70, 1385–1392.

    Article  CAS  Google Scholar 

  10. Zylstra, G. J., & Kim, E. (1997). Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. Journal of Industrial Microbiology and Biotechnology, 19, 408–414.

    Article  CAS  Google Scholar 

  11. Jin, H. M., Choi, E. J., & Jeon, C. O. (2013). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology, 145, 57–64.

    Article  CAS  Google Scholar 

  12. Kim, J. M., & Jeon, C. O. (2009). Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Current Microbiology, 58, 70–75.

    Article  CAS  Google Scholar 

  13. Assinder, S. J., & Williams, P. A. (1990). The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Advances in Microbial Physiology, 31, 1–69.

    Article  CAS  Google Scholar 

  14. Choi, E. J., Jin, H. M., Lee, S. H., Math, R. K., Madsen, E. L., & Jeon, C. O. (2013). Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Applied and Environmental Microbiology, 79, 663–671.

    Article  CAS  Google Scholar 

  15. Shi, S. N., Qu, Y. Y., Ma, F., & Zhou, J. T. (2014). Bioremediation of coking wastewater containing carbazole, dibenzofuran, dibenzothiphene and naphthalene by a naphthalene-cultivated Arthrobacter sp. W1. Bioresource Technology, 166, 79–86.

    Article  CAS  Google Scholar 

  16. Shi, S. N., Qu, Y. Y., Ma, F., & Zhou, J. T. (2014). Bioremediation of coking wastewater containing carbazole, dibenzofuran and dibenzothiphene by immobilized naphthalene-cultivated Arthrobacter sp. W1 in magnetic gellan gum. Bioresource Technology, 164, 28–33.

    Article  CAS  Google Scholar 

  17. Dwyer, D. F., Krumme, M. L., Boyd, S. A., & Tiedje, J. M. (1986). Kinetics of phenol biodegradation by an immobilized methanogenic consortium. Applied and Environmental Microbiology, 52, 345–351.

    CAS  Google Scholar 

  18. Lee, S. T., Rhee, S. K., & Lee, G. M. (1994). Biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Applied Microbiology and Biotechnology, 41, 652–657.

    Article  CAS  Google Scholar 

  19. Li, F. L., Xu, P., Feng, J. H., Meng, L., Zheng, Y., Luo, L. L., & Ma, C. Q. (2005). Microbial desulfurization of gasoline in a Mycobacterium goodii X7B immobilized-cell system. Applied and Environmental Microbiology, 71, 276–281.

    Article  CAS  Google Scholar 

  20. Wang, X., Gai, Z., Yu, B., Feng, J., Xu, C., Yuan, Y., Lin, Z., & Xu, P. (2007). Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Applied and Environmental Microbiology, 73, 6421–6428.

    Article  CAS  Google Scholar 

  21. Fernando Bautista, L., Morales, G., & Sanz, R. (2010). Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene. Bioresource Technology, 101, 8541–8548.

    Article  CAS  Google Scholar 

  22. Qiu, H., Lu, L., Huang, X., Zhang, Z., & Qu, Y. (2010). Immobilization of horseradish peroxidase on nanoporous copper and its potential applications. Bioresource Technology, 101, 9415–9420.

    Article  CAS  Google Scholar 

  23. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., & Xie, G. (2012). Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of naphthaleneic compounds. Bioresource Technology, 115, 21–26.

    Article  CAS  Google Scholar 

  24. Jiang, B., Zhou, Z.C., Dong, Y., Tao, W., Wang, B., Jiang, J.W., & Guan, X.Y., 2014. Biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Comamonas sp. JB. Applied Biochemistry and Biotechnology.

Download references

Acknowledgments

This work was supported by grants from Science and Technology Project of Liaoning Province (2014203006), Ocean & Fisheries Project of Liaoning Province (201301), Public Science and Technology Research Funds Projects of Ocean (201205012–7), Science and Technology Project of Dalian City (2012J21DW029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Jiang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Zhou, Z., Dong, Y. et al. Bioremediation of Petrochemical Wastewater Containing BTEX Compounds by a New Immobilized Bacterium Comamonas sp. JB in Magnetic Gellan Gum. Appl Biochem Biotechnol 176, 572–581 (2015). https://doi.org/10.1007/s12010-015-1596-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1596-0

Keywords

Navigation