Skip to main content
Log in

Metal Ion Coordination Essential for Specific Molecular Interactions of Butea monosperma Lectin: ITC and MD Simulation Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Editorial Expression of Concern to this article was published on 19 October 2022

This article has been updated

Abstract

Crystal structure of Butea monosperma seed lectin (BML) was analyzed and the metal ion geometry identified. In order to understand the role of metal ions for the structural stability and ligand binding, studies of demetallized protein were carried out. Binding of different ligands like GalNAc, lactose, and galactose onto native and demetallized protein was studied by isothermal titration calorimetry as well as molecular simulation methods. Molecular dynamics was applied to the structure after removing the coordinates of metal ions, to identify the effect of demetallization in silico. Docking studies of different sugar molecules as well as the fungal α-amylase was carried out and compared the interactions in the native and apo states. It was found that metal ions are important for the ligand binding with increased affinity. However, their absence did not make any alteration to the secondary structure. Though the metal ions were not coordinated to the loops contacting the α-amylase, the absence of metal ions reduced the protein-protein binding strength due to long-range changes in irregular structures of the lectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Ohba, H., Bakalova, R., Moriwaki, S., & Nakamura, O. (2002). Fractionation of normal and leukemic T-cells by lectin-affinity column chromatography. Cancer Letters, 184, 207–214.

    Article  CAS  Google Scholar 

  2. Peumans, W. J., & Van Damme, E. J. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352.

    Article  CAS  Google Scholar 

  3. Abhilash, J., Geethanandan, K., Bharath, S. R., Sadasivan, C., & Haridas, M. (2011). Crystallization and preliminary X-ray diffraction analysis of a galactose-specific lectin from the seeds of Butea monosperma. Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 67, 524–526.

    Article  CAS  Google Scholar 

  4. Abhilash, J., Geethanandan, K., Bharath, S. R., Sabu, A., Sadasivan, C., & Haridas, M. (2015). The crystal structure of a lectin from Butea monosperma: insight into its glycosylation and binding of ligands. International Journal of Biological Macromolecules, 72, 1376–1383.

    Article  CAS  Google Scholar 

  5. Mitra, N., Srinivas, V. R., Ramya, T. N. C., Ahmad, N., Reddy, G. B., & Surolia, A. (2002). Conformational stability of legume lectins reflect their different modes of quaternary association: solvent denaturation studies on concanavalin A and winged bean acidic agglutinin. Biochemistry, 41, 9256–9263.

    Article  CAS  Google Scholar 

  6. Imberty, A., Gautier, C., Lescar, J., Pérez, S., Wyns, L. A., & Loris, R. (2000). An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid containing oligosaccharides. Journal of Biological Chemistry, 275, 17541–17548.

    Article  CAS  Google Scholar 

  7. Dessen, A., Gupta, D., Sabesan, S., Brewer, C. F., & Sacchettini, J. C. (1995). X-ray crystal structure of the soybean agglutinin cross-linked with a biantennary analog of the blood group I carbohydrate antigen. Biochemistry, 34, 4933–4942.

    Article  CAS  Google Scholar 

  8. Hamelryck, T. W., Dao-Thi, M. H., Poortmans, F., Chrispeels, M. J., Wyns, L., & Loris, R. (1996). The crystallographic structure of phytohemagglutinin-L. Journal of Biological Chemistry, 271, 20479–20485.

    Article  CAS  Google Scholar 

  9. Buts, L., Dao-Thi, M. H., Loris, R., Wyns, L., Etzler, M., & Hamelryck, T. (2001). Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. Journal of Molecular Biology, 309, 193–201.

    Article  CAS  Google Scholar 

  10. Rabijns, A., Verboven, C., Rougé, P., Barre, A., Van Damme, E. J., Peumans, W. J., & De Ranter, C. J. (2001). Structure of a legume lectin from the bark of Robinia pseudoacacia and its complex with Nacetylgalactosamine. Proteins, 44, 470–478.

    Article  CAS  Google Scholar 

  11. Naidoo, K. J., & Brady, J. W. (1997). Molecular dynamics simulations of a glycoprotein: the lectin from Erythrina corallodendron. Journal of Molecular Structure: THEOCHEM, 395, 469–475.

    Article  Google Scholar 

  12. Caffarena, E. R., Grigera, J. R., & Bisch, P. M. (2002). Stochastic molecular dynamics of peanut lectin PNA complex with T-antigen disaccharide. Journal of Molecular Graphics and Modelling, 21, 227–240.

    Article  CAS  Google Scholar 

  13. Praveen, K., & Bernd, N. (2007). Molecular dynamics simulations of pea (Pisum sativum) lectin structure with octyl glucoside detergents: the ligand interactions and dynamics. Biophysical Chemistry, 128, 215–230.

    Article  Google Scholar 

  14. Abhilash, J., Dileep, K. V., Palanimuthu, M., Geethanandan, K., Sadasivan, C., & Haridas, M. (2013). Metal ions in sugar binding, sugar specificity and structural stability of Spatholobus parviflorus seed lectin. Journal of Molecular Modelling, 8, 3271–3278.

    Article  Google Scholar 

  15. Kaushik, S., Mohanty, D., & Surolia, A. (2009). The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study. Biophysical Journal, 96, 21–34.

    Article  CAS  Google Scholar 

  16. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., & Kollman, P. A. (1995). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117, 5179–5197.

    Article  CAS  Google Scholar 

  17. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impeyand, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926–935.

    Article  CAS  Google Scholar 

  18. Sherman, W., Beard, H. S., & Farid, R. (2006). Use of an induced fit receptor structure in virtual screening. Chemical Biology and Drug Design, 67, 83–84.

  19. Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure of protein-ligand complexes. Journal of Medicinal Chemistry, 21, 6177–6196.

  20. Tintu, I., Dileep, K. V., Remya, C., Anu, A., & Sadasivan, C. (2012). 6-Gingerol inhibits fungal alpha amylase: enzyme kinetic and molecular modeling studies. Starch, 8, 607–612.

    Article  Google Scholar 

  21. Ritchie, D. W. (2003). Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2. Proteins: Structure, Function, and Genetics, 52, 98–106.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haridas.

Additional information

Prof. M. Haridas, Department of Biotechnology & Microbiology and Inter University Centre for Bioscience, Kannur University, and holds a Ph.D degree.

J. Abhilash holds a M.Sc degree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhilash, J., Haridas, M. Metal Ion Coordination Essential for Specific Molecular Interactions of Butea monosperma Lectin: ITC and MD Simulation Studies. Appl Biochem Biotechnol 176, 277–286 (2015). https://doi.org/10.1007/s12010-015-1573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1573-7

Keywords

Navigation