Skip to main content
Log in

Synthesis, Characterization, Biological Evaluation and Docking Study of Heterocyclic-Based Synthetic Sulfonamides as Potential Pesticide Against G. mellonella

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Juvenile hormone is an important hormone which controls the developmental process in the lepidopteran insects, hence, referred as insect growth regulator. Juvenile hormone binding proteins are the carrier of juvenile hormone from the site of secretion to the site of action and play vital role in juvenile hormone action. We have designed four different juvenile hormone analogs incorporating sulfonamide and heterocyclic moieties using computer-aided tools. All analogs (T3–T6) gave comparative energy profile in comparison to in use insect growth regulators like fenoxycarb (T2) and pyriproxyfen (T1). Further, theses analogs have been screened on biological model Galleria mellonella (wax moth) for their mortality rate. All analogs were evaluated using three different concentrations (1000, 1500, and 2000 ppm) and five different exposure periods (2, 4, 6, 8, and 10 h). In vivo study showed that analog N-(1-isopropyl-2-oxo-2-morpholino-ethyl) toluene sulfonamide (T6) and N-(1-isopropyl-2-oxo-2-piperidino-ethyl) toluene sulfonamide (T4) exhibit the good larval mortality at lower concentration (1000 ppm) after 8 h exposure in comparison to pyriproxyfen (T1) and fenoxycarb (T2). The findings demonstrate the effectiveness and validity of the virtual screening approach (docking) and provide a starting point for the development of novel juvenile hormone analogs to counter G. mellonella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wyatt, G. R., & Davey, K. G. (1996). Cellular and molecular action of juvenile hormone.2. Roles of juvenile hormone in adult insects. Advances in Insect Physiology, 26, 1–155.

    Article  CAS  Google Scholar 

  2. Gilbert, L. I., Graner, N. A., & Roe, R. M. (2000). The juvenile hormones: historical facts and speculation on future research directions. Insect Biochemisry and Molecular Biology, 30, 617–644.

    Article  CAS  Google Scholar 

  3. Retnakaran, A., Granett, J., & Ennis, T. (1985). Insect growth regulators. In G. A. Kerkut & L. I. Gilbert (Eds.), Comprehensive Insect Physiology Biochemistry and Pharmacology (pp. 529–601). Oxford, U.K.: Pergamon Press.

    Google Scholar 

  4. Slama, K., Romaouk, M., & Sorm, F. (1974). Insect hormones and bioanalogs (p. 477). Wien, New York: Springer.

    Book  Google Scholar 

  5. Furuta, K., Fujita, N., Ibushi, T., Shiotsuki, T., Yamada, N., & Kuwano, E. (2010). Synthesis and anti-juvenile hormone activity of ethyl 4-[(6-substituted 2, 2-dimethyl-2H-chromen-7-yl)methoxy]benzoates. Journal of Pesticide Science, 35(4), 405–411.

    Article  CAS  Google Scholar 

  6. Goh, W. K., Rice, S. A., & Kumar, N. (2005). Theoretical study of molecular determinants involved in signal binding to the TraR protein of Agrobacterium tumefaciens. Molecules, 10, 1263–1271.

    Article  CAS  Google Scholar 

  7. Roe, R. M., Anspaugh, D. D., Venkatesh, K., Linderman, R. J., & Graves, D. M. (1997). A novel geminal diol as a highly specific and stable in vivo inhibitor of insect juvenile hormone esterase. Archives of Insect Biochemistry and Physiology, 36, 165–179.

    Article  CAS  Google Scholar 

  8. Bhattacharjee, A. K., Gupta, R. K., Ma, D., & Karle, J. M. (2000). Molecular similarity analysis between insect juvenile hormone and N, N-diethyl-m-toluamide (DEET) analogs may aid design of novel insect repellents. Journal of Molecular Recognition, 13(4), 213–220.

    Article  CAS  Google Scholar 

  9. Wimmer, Z., Kuldova, J., Hrdy, I., & Bennettova, B. (2006). Can juvenogens, biochemically targeted hormonogen compounds, assist in environmentally safe insect pest management? Insect Biochemistry and Molecular Biology, 36(6), 442–453.

    Article  CAS  Google Scholar 

  10. Kad, G. L., & Kalra, R. (1999). Juvenile Hormone analogs active on mosquitoes: synthesis and juvenile hormonal activity of newly synthesized long chain alkoxy alkyl phenyl ethers. Archives of Pharmacal Research, 22(5), 502–506.

    Article  CAS  Google Scholar 

  11. Awasthi, P., & Mahajan, R. K. (2008). Synthesis of some sulphonamide insect juvenile hormone—part I. Indian Journal of Chemistry, 47(B), 1291–1297.

    Google Scholar 

  12. Jurcek, O., Wimmer, Z., Svobodova, H., Bennettova, B., Kolehmainen, E., & Drasar, P. (2009). Preparation and preliminary biological screening of cholic acid–juvenoid conjugates. Steroids, 74, 779–785.

    Article  CAS  Google Scholar 

  13. Wheeler, D. E., & Nijhout, H. F. (2003). A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bio Essays, 25, 994–1001.

    CAS  Google Scholar 

  14. Gaubard, Y. (2005) Juvenile hormone binding proteins-importance on the JH action. Lund University, Introductory paper no 168.

  15. Kramer, K. J., Dunn, P. E., Peterson, R. C., & Law, J. H. (1976). Interaction of juvenile hormone with binding proteins in hemolymph. In L. I. Gilbert (Ed.), The Juvenile Hormones (pp. 327–341). New York: Plenum Press.

    Chapter  Google Scholar 

  16. Goodman, W., Ohern, P. A., Zaugg, R. H., & Gilbert, L. I. (1978). Purification and characterization of a juvenile hormone binding protein from the hemolymph of the fourth instar tobacco hornworm, Manduca sexta. Molecular and Cellular Endocrinology, 11, 225–242.

    Article  CAS  Google Scholar 

  17. Wieczorek, E., & Kochman, M. (1991). Conformational change of the haemolymph juvenile-hormone-binding protein from Galleria mellonella (L). European Journal of Biochemistry, 201, 347–353.

    Article  CAS  Google Scholar 

  18. Krzyżanowska, D., Lisowski, M., & Kochman, M. (1998). UV-difference and CD spectroscopy studies on juvenile hormone binding to its carrier protein. Journal of Peptide Research, 51, 96–102.

    Article  Google Scholar 

  19. Kołodziejczyk, R., Bujacz, G., Jakob, M., Ozyhar, A., Jaskolski, M., & Kochman, M. (2008). Insect juvenile hormone binding protein shows ancestral fold present in human lipid-binding proteins. Journal of Molecular Biology, 377, 870–881.

    Article  Google Scholar 

  20. Touhara, K., & Prestwich, G. D. (1992). Binding site mapping of a photoaffnity-labeled juvenile hormone binding protein. Biochemical and Biophysical Research Communications, 182, 466–473.

    Article  CAS  Google Scholar 

  21. Hejno, K., & Sorm, F. (1976). Synthesis of 8-oxa analogs of acyclic juvenoidal substances. Collection of Czechoslovak Chemical Communications, 41, 151–157.

    Article  CAS  Google Scholar 

  22. Hejno, K., & Sorm, F. (1980). Cyclic analogs of insect juvenile hormone. Collection of Czechoslovak Chemical Communications, 45, 1734–1743.

    Article  CAS  Google Scholar 

  23. Odinokov, V. N., Kukovinets, O. S., Zainullin, R. A., & Tolstikov, G. A. (1992). The synthesis of insect juvenile hormones and their analogs. Russian Chemical Reviews, 61(7), 731–762.

    Article  Google Scholar 

  24. Wawrzeńczyk, C., Derdzińnski, K., & Zabza, A. (1984). Insect growth regulators. XIV. Juvenoids with cyclopentene ring. Synthesis of isopropyl 3,7-dimethyl-10-(2,2,3-trimethyl-cyclopent-3-en-1-yl)-deca-2,8-dienoate and -deca-2,4,8-trienoate. Journal für Praktische Chemie, 326, 213–221.

    Article  Google Scholar 

  25. Kahovcova, J., Romanuk, M., & Sorm, F. (1978). Aliphatic-aromatic ethers with a cycloacetal bond in the molecule. Collection of Czechoslovak Chemical Communications, 43, 1502–1510.

    Article  CAS  Google Scholar 

  26. Awasthi, P., & Sharma, P. (2012). In silico screening of the juvenile hormone analogs with juvenile hormone binding protein of Galleria mellonella—a docking study. SAR and QSAR in Environmental study., 23(7–8), 607–625.

    Article  CAS  Google Scholar 

  27. Awasthi, P. Sharma, P. (2012) Docking study of synthesized juvenile hormone analogs as an insect growth regulator. 14th International Conference on Modelling and Simulation, (UKSim), 113-116: ISBN: 978-1-4673-1366-7.

  28. Awasthi, P., & Sharma, P. (2013). Designing and Binding mode prediction of juvenile hormone analogs as potential inhibitor for Galleria mellonella. Journal of Computer Science &System Biology, 6, 106–111.

    CAS  Google Scholar 

  29. Ali, E. S. H., Nassar, F. I., Badawi, A., & Afify, S. A. (2010). Physical properties and biological applications of novel substituted biphenyl-sulfonamides. International Journal of Genetics and Molecular Biology, 2(5), 78–91.

    Google Scholar 

  30. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  31. M. John, Organic Chemistry. 5th edition. Brooke/Cole. (2000), 1002.

  32. Robert, T. M., & Robert, N. B. (1992). Organic Chemistry (6th ed.). New Jersy: Prentice-Hall international Inc. pp 859-876.

    Google Scholar 

  33. Ashfaq, M., Al–Tememi, N. K., & Ahmed, S. (2005). Effect of artificial diets on some parameters of greater wax moth Galleria mellonella L. under optimum conditions. Journal of Agricultural Reseach, 43(3), 223–228.

    Google Scholar 

  34. Amiri, A., Bandani, A. R., & Darvishzadeh, A. (2012). Effects of the insect growth regulators Methoxyfenozide and Pyriproxyfen on adult diapause in sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae). Journal of Agricultural Science Technology, 14, 1205–1218.

    CAS  Google Scholar 

  35. Ghoneim, K. S., Hamadah, K. S., & Tanani, M. A. (2012). Protein disturbance in the haemolymph and fat body of the desert locust Schistocerca Gregaria as a response to certain insect growth regulators. Bulletin Environment Pharmacology Life Science, 1(7), 73–83.

    Google Scholar 

  36. Fahmy, N. M. (2012). Impact of two insect growth regulators on the enhancement of oxidative stress and antioxidant efficiency of the cotton leaf worm, Spodoptera littoralis (Biosd.). Egyptian Academic Journal of Biological Science, 5(1), 137–149.

    Google Scholar 

  37. Mojaver, M., & Bandani, A. R. (2010). Effects of the insect growth regulator pyriproxyfen on immature stages of sunn pest, Eurygaster Integriceps Puton (Heteroptera: Scutelleridae). Munis Entomology Zoology, 5(1), 187–197.

    Google Scholar 

  38. Esposito, E. X., Baran, K., Kelly, K., & Madura, J. D. (2000). Docking of sulfonamides to carbonic anhydrase II and IV. Journal of Molecular Graphics and Modeling, 18, 283–289.

    Article  CAS  Google Scholar 

  39. Jones, G., Wozniak, M., Chu, Y. X., Dhar, S., & Jones, D. (2001). Juvenile hormone III-dependent conformational changes of the nuclear receptor ultraspiracle. Insect Biochemistry and Molecular Biology, 32, 33–49.

    Article  Google Scholar 

  40. Wilhelm, T., & Nikolajewa, S. (2004). A new classification scheme of the genetic code. Journal of Molecular Evolution, 59, 598–605.

    Article  CAS  Google Scholar 

  41. Doig, A. J., & Williams, D. H. (1992). Binding energy of an amide-amide hydrogen bond in aqueous and nonpolar solvents. Journal of the American Chemical Society, 114, 338–343.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research work reported in this manuscript is supported by the research grant number—SR/FT/CS-078/2009 under SERC-DST (Fast Tract Project) Ministry of Science and Technology, Govt. of India. The authors would like to thank Director of National Institute of Technology, Hamirpur, India, for providing necessary laboratory facilities to carry out this work. We are also thankful to Director, Institute of Biotechnology and Environmental Science-Neri (Hamirpur) H.P for providing the help regarding biological evaluation of the analogs.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamita Awasthi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Thakur, S. & Awasthi, P. Synthesis, Characterization, Biological Evaluation and Docking Study of Heterocyclic-Based Synthetic Sulfonamides as Potential Pesticide Against G. mellonella . Appl Biochem Biotechnol 176, 125–139 (2015). https://doi.org/10.1007/s12010-015-1562-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1562-x

Keywords

Navigation