Abstract
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme that catalyzes the methylation of catechol substrates, and while structural and functional studies of its membrane-bound isoform (MBCOMT) are still hampered by low recombinant production, Pichia pastoris has been described as an attractive host for the production of correctly folded and inserted membrane proteins. Hence, in this work, MBCOMT biosynthesis was developed using P. pastoris X33 and KM71H cells in shake flasks containing a semidefined medium with different methanol concentrations. Moreover, after P. pastoris glass beads lysis, biologically and immunologically active hMBCOMT was found mainly in the solubilized membrane fraction whose kinetic parameters were identical to its correspondent native enzyme. In addition, mixed feeds of methanol and glycerol or sorbitol were also employed, and its levels quantified using liquid chromatography coupled to refractive index detection. Overall, for the first time, two P. pastoris strains with opposite phenotypes were applied for MBCOMT biosynthesis under the control of the strongly methanol-inducible alcohol oxidase (AOX) promoter. Moreover, this eukaryotic system seems to be a promising approach to deliver MBCOMT in high quantities from fermentor cultures with a lower cost-benefit due to the cheaper cultivation media coupled with the higher titers tipically achieved in biorreactors, when compared with previously reported mammallian cell cultures.
Similar content being viewed by others
Abbreviations
- AOX:
-
Alcohol oxidase
- COMT:
-
Catechol-O-methyltransferase
- E. coli :
-
Escherichia coli
- DNA:
-
Deoxyribonucleic acid
- gDNA:
-
Genomic DNA
- HPLC:
-
High-peformance liquid chromatography
- LLOQ:
-
Lower limit of quantification
- MBCOMT:
-
Membrane-bound catechol-O-methyltransferase
- MP:
-
Membrane protein
- Mut:
-
Methanol utilization
- MutS :
-
Methanol utilization slow
- Mut+ :
-
Methanol utilization plus
- OD600 :
-
Optical density 600 nm
- PCR:
-
Polymerase chain reaction
- P. pastoris :
-
Pichia pastoris
- RID:
-
Refractive index detection
- SAM:
-
S-adenosyl-L-methionine
- SCOMT:
-
Soluble catechol-O-methyltransferase
- SDS-PAGE:
-
Reducing sodium dodecyl sulfate polyacrylamide
References
Bonifacio, M. J., Palma, P. N., Almeida, L., & Soares-da-Silva, P. (2007). Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Reviews, 13(3), 352–379.
Reenila, I., & Mannisto, P. T. (2001). Catecholamine metabolism in the brain by membrane-bound and soluble catechol-O-methyltransferase (COMT) estimated by enzyme kinetic values. Medical Hypotheses, 57(5), 628–632.
Kanasaki, K., Palmsten, K., Sugimoto, H., Ahmad, S., Hamano, Y., Xie, L., Parry, S., Augustin, H. G., Gattone, V. H., Folkman, J., Strauss, J. F., & Kalluri, R. (2008). Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature, 453(7198), 1117–1121.
Papaleo, F. J., Crawley, N., Song, J., Lipska, B. K., Pickel, J., Weinberger, D. R., & Chen, J. (2008). Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. Journal of Neuroscience, 28(35), 8709–8723.
Zhu, B. T., & Liehr, J. G. (1993). Inhibition of the catechol-O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by catecholamine: implications for the mechanism of estrogen-induced carcinogenesis. Archives of Biochemistry and Biophysics, 304(1), 248–256.
Zhu, B. T. (2002). On the mechanism of homocysteine pathophysiology and pathogenesis: a unifying hypothesis. Histology and Histopathology, 17(4), 1283–1291.
Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1997). Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6(3), 243–250.
Malherbe, P., Bertocci, B., Caspers, P., Zurcher, G., & Da Prada, M. (1992). Expression of functional membrane-bound and soluble catechol-O-methyltransferase in Escherichia coli and a mammalian cell line. Journal of Neurochemistry, 58(5), 1782–1789.
Vilbois, F., Caspers, P., da Prada, M., Lang, G., Karrer, C., Lahm, H. W., & Cesura, A. M. (1994). Mass spectrometric analysis of human soluble catechol-O-methyltransferase expressed in Escherichia coli. Identification of a product of ribossomal frameshifting and of reactive cysteines involved in S-adenosyl-L-methionine binding. European Journal of Biochemistry, 222(2), 377–386.
Bai, H. W., Shim, J. Y., Yu, J., & Zhu, B. T. (2007). Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catehcol-O-methyltransferase. Chemical Research in Toxicology, 20(10), 1409–1425.
Pedro, A. Q., Bonifacio, M. J., Queiroz, J. A., Maia, C. J., & Passarinha, L. A. (2011). A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-O-methyltranferase. Journal of Biotechnology, 156(2), 141–146.
Santos, F. M., Pedro, A. Q., Soares, R. F., Martins, R., Bonifacio, M. J., Queiroz, J. A., & Passarinha, L. A. (2013). Performance of hydrophobic interaction ligands for human membrane-bound catechol-O-methyltransferase purification. Journal of Separation Science, 36(11), 1693–1702.
Correia, F. F., Santos, F. M., Pedro, A. Q., Bonifácio, M. J., Queiroz, J. A., & Passarinha, L. A. (2013). Recovery of biological active catechol-O-methyltransferase isoforms from Q-sepharose. Journal of Separation Science, 37(1–2), 20–29.
Tilgmann, C., Melen, K., Lundstrom, K., Jalanko, A., Julkunen, I., Kalkkinen, N., & Ulmanen, I. (1992). Expression of recombinant soluble and membrane-bound catechol-O-methyltransferase in eukaryotic cells and identification of the respective enzymes in rat brain. European Journal of Biochemistry, 207(2), 813–821.
Bertocci, B., Miggiano, V., Da Prada, M., Dembic, Z., Lahm, H. W., & Malherbe, P. (1991). Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proceedings of the National Academy of Sciences of the United States of America, 88(4), 1416–1420.
Ulmanen, I., Peranen, J., Tenhunen, J., Tilgmann, C., Karhunen, T., Panula, P., Bernasconi, L., Aubry, J. P., & Lundstrom, K. (1997). Expression and intracellular localization of catechol-O-methyltransferase in transfected mammalian cells. European Journal of Biochemistry, 243(1–2), 452–459.
Junge, F. B., Schneider, B., Reckel, S., Schwarz, V., Dotsch, V., & Bernhard, F. (2008). Large-scale production of functional membrane proteins. Cellular and Molecular Life Sciences, 65(11), 1729–1755.
Cregg, J. M., Cereghino, J. L., Shi, J., & Higgins, D. R. (2000). Recombinant protein expression in Pichia pastoris. Molecular Biotechnology, 16(1), 23–52.
Goncalves, A. M., Pedro, A. Q., Maia, C., Sousa, F., Queiroz, J. A., & Passarinha, L. A. (2013). Pichia pastoris, a recombinant microfactory for antibodies and human membrane proteins. Journal of Microbiology and Biotechnology, 23(5), 587–601.
Ramon, A., & Marin, M. (2011). Advances in the production of human membrane proteins in Pichia pastoris. Biotechnology Journal, 6(6), 700–706.
Vogl, T., & Glieder, A. (2013). Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology, 30(4), 385–404.
Burrowes, O. J., Diamond, G., & Lee, T. C. (2005). Recombinant expression of pleurocidin cDNA using the Pichia pastoris expression system. Journal of Biomedicine & Biotechnology, 4, 374–384.
Villatte, F., Hussein, A. S., Bachmann, T. T., & Schmid, R. D. (2001). Expression level of heterologous proteins in Pichia pastoris is influenced by flask design. Applied Microbiology and Biotechnology, 55(4), 463–465.
Jahic, M., Veide, A., Charoenrat, T., Teeri, T., & Enfors, S. O. (2006). Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 22(6), 1465–1473.
Cos, O., Ramon, R., Montesinos, J. L., & Valero, F. (2006). Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5, 17–37.
Chiruvolu, V., Cregg, J. M., & Meagher, M. M. (1997). Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fed-batch fermentations. Enzyme Microbiology Technology, 21, 277–283.
Pontes, H., Pinho, P., Casal, S., Carmo, H., Santos, A., Magalhaes, T., Remião, F., Carvalho, F., & Lourdes Bastos, M. (2009). Determination of ethanol, metanol, acetone and acetaldehyde by a simple capillary direct injection gas chromatographic method in human whole blood, vitreous humour and urine and in cell culture medium. Journal of Chromatographic Science, 47(4), 272–278.
Parpinello, G., & Versari, A. (2000). A simple high-performance liquid chromatography method for the analysis of glucose, glycerol and methanol in a bioprocess. Journal of Chromatographic Science, 38(6), 259–261.
Almuzara, C., Cos, O., Baeza, M., Gabriel, D., & Valero, F. (2002). Methanol determination in Pichia pastoris cultures by flow injection analysis. Biotechnology Letters, 24, 413–417.
Zhang, W., Hywood Potter, K. J., Plantz, B. A., Schlegel, V. L., Smith, L. A., & Meagher, M. M. (2003). Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. Journal of Industrial Microbiology & Biotechnology, 30(4), 210–215.
Katakura, Y., Zhang, W., Zhuang, G., Omasa, T., Kishimoto, M., Goto, Y., & Suga, K.-I. (1998). Effect of the methanol concentration on the production of human beta(2)-glycoprotein I domain V by a recombinant Pichia pastoris: a simple system for the control of methanol concentration using a semiconductor gas sensor. Journal of Fermentation and Bioengineering, 86, 482–487.
Hellwig, S., Emde, F., Raven, N. P., Henke, M., Van Der Logt, P., & Fischer, R. (2001). Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnology and Bioengineering, 74, 344–352.
Celik, E., Calik, P., & Oliver, S. G. (2009). fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast, 26(9), 473–484.
Tenhunen, J., Salminen, M., Lundstrom, K., Kiviluoto, T., Savolainen, R., & Ulmanen, I. (1994). Genomic organization of the human catechol-O-methyltransferase gene and its expression from two distinct promoters. European Journal of Biochemistry, 223(3), 1049–1059.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
Passarinha, L. A., Bonifacio, M. J., & Queiroz, J. A. (2007). Comparative study on the interaction of recombinant human soluble catechol-O-methyltransferase on some hydrophobic adsorbents. Biomedical Chromatography, 21(4), 430–438.
Passarinha, L. A., Bonifacio, M. J., & Queiroz, J. A. (2006). The effect of temperature on the analysis of metanephrine for catechol-O-methyltransferase activity assay with electrochemical detection. Biomedical Chromatography, 20(9), 937–944.
Goodrick, J. C., Xu, M., Finnegan, R., Schilling, B. M., Schiavi, S., Hoppe, H., & Wan, N. C. (2001). High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system. Biotechnology and Bioengineering, 74(6), 492–497.
Oberg, F., Ekvall, M., Nyblom, M., Backmark, A., Neutze, R., & Hedfalk, K. (2009). Insight into factors directing high production of eukaryotic membrane proteins; production of 13 human AQPs in Pichia pastoris. Molecular Membrane Biology, 26, 215–227.
Long, S. B., Tao, X., Campbell, E. B., & Mackinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 450, 376–382.
Orman, M. A., Çalik, P., & Ozdamar, H. O. (2009). The influence of carbon sources on recombinant-human-growth hormone production by Pichia pastoris is dependent on phenotype: a comparison of MutS and Mut+ strains. Biotechnology and Applied Biochemistry, 52, 245–255.
Horstkotte, B., Arnau, C., Valero, F., Elsholz, O., & Cerdà, V. (2008). Monitoring of sorbitol in Pichia pastoris cultivation applying sequential injection analysis. Biochemical Engineering Journal, 42, 77–83.
Food and Drug administration - Guidance for Industry – bioanalytical method validation., U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM) (2001), Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf. Assessed 20/03/2014.
Zhang, P., Zhang, W., Zhou, X., Bai, P., Cregg, J. M., & Zhang, Y. (2010). Catabolite repression of Aox in Pichia pastoris is dependent on hexose transporter PpHxt1 and pexophagy. Applied and Environmental Microbiology, 76(18), 6108–6118.
Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenship, D. T., Tsay, J. T., Smith, P. L., Wierschke, J. D., Subramaniam, A., & Birkenberger, L. A. (1997). Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene, 190, 55–62.
Kim, S. I., Wu, Y., Kim, K. L., Kim, G. J., & Shin, H. J. (2013). Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay. World Journal of Microbiology and Biotechnology, 29(6), 1129–1132.
Giersing, B., Miur, a. K., Shimp, R., Wang, J., Zhou, H., Orcutt, A., Stowers, A., Saul, A., Miller, L. H., Long, C., & Singh, S. (2005). Posttranslational modification of recombinant Plasmodium falciparum apical membrane antigen 1: impact on functional immune responses to malaria vaccine candidate. Infection and Immunity, 73(7), 3963–3970.
Abad, S., Nahalka, J., Bergler, G., Arnold, S. A., Speight, R., Fotheringam, I., Nidetzsky, B., & Glieder, A. (2010). Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microbial Cell Factories, 9, 24–36.
Daniels, M. J., Wood, M. R., & Yeager, M. (2006). In vivo functional assay of a recombinant aquaporin in Pichia pastoris. Applied Environmental Microbiology, 72(2), 1507–1514.
Pla, I. A., Damasceno, L. M., Vannelli, T., Ritter, G., Batt, C. A., & Shuler, M. L. (2006). Evaluation of MutS and Mut+ Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnology Progress, 22, 881–888.
Bonifacio, M. J., & Soares-da-Silva, P. (2003). Purification of membrane-bound catechol-O-methyltransferase. Methods in Molecular Biology, 228, 231–238.
Prive, G. C. (2007). Detergents for the stabilization and crystallization of membrane proteins. Methods, 41(4), 388–397.
Acknowledgments
A.Q. Pedro acknowledges a doctoral fellowship (SFRH/BD/81222/2011) from Fundação para a Ciência e Tecnologia and D. Oppolzer acknowledges a fellowship (CENTRO-07-ST24_FEDER-002014-TPCR-2-004) from Programa “Mais Centro” within the scope of QREN–POPH–Advanced Formation programs cofunded by Fundo Social Europeu and MEC. This work was partially funded by Fundação para a Ciência e Tecnologia I.P. (PIDDAC) and Fundo Europeu de Desenvolvimento Regional-FEDER funds through Programa Operacional Factores de Competitividade (POFC)–COMPETE: FCOMP-01-0124-FEDER-027563 and by National Funds through FCT–Fundação para a Ciência e Tecnologia within the scope of Project “EXPL/BBB478/BQB/0960/2012.”
Conflict of Interest
All authors declare they do not have any conflict of interest.
Compliance with Ethical Standards
In this work, no studies involving human participants or animals were carried out.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pedro, A.Q., Oppolzer, D., Bonifácio, M.J. et al. Evaluation of MutS and Mut+ Pichia pastoris Strains for Membrane-Bound Catechol-O-Methyltransferase Biosynthesis. Appl Biochem Biotechnol 175, 3840–3855 (2015). https://doi.org/10.1007/s12010-015-1551-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-015-1551-0