Skip to main content
Log in

The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The efficiency of optimal metabolic function by microorganism depends on various parameters, especially essential metal supplementation. In the present study, the effects of iron and copper metals on metabolism were investigated by determination of glycolysis and tricarboxylic acid (TCA) cycle metabolites’ levels with respect to the metal concentrations and incubation period in Trichoderma harzianum. The pyruvate and citrate levels of T. harzianum increased up to 15 mg/L of copper via redirection of carbon flux though glycolysis by suppression of pentose phosphate pathway (PPP). However, the α-ketoglutarate levels decreased at concentration higher than 5 mg/L of copper to overcome damage of oxidative stress. The fumarate levels correlated with the α-ketoglutarate levels because of substrate limitation. Besides, in T. harzianum cells grown in various concentrations of iron-containing medium, the intracellular pyruvate, citrate, and α-ketoglutarate levels showed positive correlation with iron concentration due to modifying of expression of glycolysis and TCA cycle enzymes via a mechanism involving cofactor or allosteric regulation. However, as a result of consuming of prior substrates required for fumarate production, its levels rose up to 10 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stryer, L. (1988). In L. Stryer (Ed.), Biochemistry: Glycolysis (pp. 365–443). New York: W.H. Freeman.

    Google Scholar 

  2. Ames, B. N. (2003). The metabolic tune-up: metabolic harmony and disease prevention. The Journal of Nutrition, 133, 1544–1548.

    Google Scholar 

  3. Ames, B. N. (2003). Delaying the mitochondrial decay of aging: a metabolic tune-up. Alzheimer Disease and Associated Disorders, 17, 54–57.

    Article  Google Scholar 

  4. Ames, B. N. (2004). A role for supplements in optimizing health: the metabolic tune-up. Archives of Biochemistry and Biophysics, 423, 227–234.

    Article  CAS  Google Scholar 

  5. Atamna, H. (2004). Heme, iron, and the mitochondrial decay of ageing. Ageing Research Reviews, 3, 303–318.

    Article  CAS  Google Scholar 

  6. Ayar Kayali, H., & Tarhan, L. (2005). Variation in metal uptake, antioxidant enzyme response and membrane lipid peroxidation level in Fusarium equiseti and F. acuminatum. Process Biochemistry, 40, 1783–1790.

    Article  Google Scholar 

  7. Lill, R., & Muhlenhoff, U. (2008). Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected pocesses, and diseases. Annual Review of Biochemistry, 77, 669–700.

    Article  CAS  Google Scholar 

  8. Ozer, A., & Bruick, R. K. (2007). Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nature Chemical Biology, 3, 144–153.

    Article  CAS  Google Scholar 

  9. Paoli, M., Marles-Wright, J., & Smith, A. (2002). Structure-function relationships in heme-proteins. DNA and Cell Biology, 21, 271–280.

    Article  CAS  Google Scholar 

  10. Tainer, J. A., Getzoff, E. D., Richardson, J. S., & Richardson, D. C. (1983). Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306, 284–287.

    Article  CAS  Google Scholar 

  11. Linder, M. C., & Hazegh-Azam, M. (1996). Copper biochemistry and molecular biology Am. The Journal of Clinical Nutrition, 63, 797–811.

    Google Scholar 

  12. Kaplan, J., & O’Halloran, T. V. (1996). Iron metabolism in eukaryotes: mars and venus at it again. Science, 271, 1510–1512.

    Article  CAS  Google Scholar 

  13. Rucker, R. B., Kosonen, T., Clegg, M. S., Mitchell, A. E., Rucker, B. R., Uriu-Hare, J. Y., & Keen, C. L. (1998). Copper, lysyl oxidase, and extracellular matrix protein cross-linking. The American Journal of Clinical Nutrition, 67, 996–1002.

    Google Scholar 

  14. Wagner, G. S., & Tephly, T. R. (1975). A possible role of copper in the regulation of heme biosynthesis through ferrochelatase. Advances in Experimental Medicine and Biology, 58, 343–354.

    Article  CAS  Google Scholar 

  15. Williams, D. M., Kennedy, F. S., & Green, B. G. (1985). The effect of iron substrate on mitochondrial haem synthesis in copper deficiency. The British Journal of Nutrition, 53, 131–136.

    Article  CAS  Google Scholar 

  16. Deane, E. E., Whipps, J. M., Lynch, J. M., & Peberdy, J. F. (1998). The purification and characterization of a Trichoderma harzianum exochitinase. Biochimica et Biophysica Acta, 1383, 101–110.

    Article  CAS  Google Scholar 

  17. Yang, C. Y., Gu, Z. W., Yang, H. X., Yang, M., Gotto, A. M., & Smith, C. V. (1997). Oxidative modifications of ApoB-100 by exposure of low density lipoproteins to HOCL in vitro. Free Radical Biology and Medicine, 23, 82–89.

    Article  CAS  Google Scholar 

  18. Ganzera, M., Vrabl, P., Wörle, E., Burgstaller, W., & Stuppner, H. (2006). Determination of adenine and pyridine nucleotides in glucose-limited chemostat cultures of Penicillium simplicissimum by one-step ethanol extraction and ion-pairing liquid chromatography. Analytical Biochemistry, 359, 132–140.

    Article  CAS  Google Scholar 

  19. Ayar Kayalı, H., & Tarhan, L. (2006). Vancomycin antibiotic production and TCA-glyoxalate pathways depending on the glucose concentration in Amycolatopsis orientalis. Enzyme Microbial Technology, 38(6), 727–734.

    Article  Google Scholar 

  20. Hultberg, B., Andersson, A., & Isaksson, A. (1998). Alterations of thiol metabolism in human cell lines induced by low amounts of copper, mercury or cadmium ions. Toxicology, 126, 203–212.

    Article  CAS  Google Scholar 

  21. Carattino, M. D., Peralta, S., Pérez-Coll, C., Naab, F., Burlón, A., Kreiner, A. J., Preller, A. F., & Fonovich De Schroeder, T. M. (2004). Effects of long-term exposure to Cu2+ and Cd2+ on the pentose phosphate pathway dehydrogenase activities in the ovary of adult Bufo arenarum: possible role as biomarker for Cu2+ toxicity. Ecotoxicology and Environmental Safety, 57, 311–318.

    Article  CAS  Google Scholar 

  22. Gebhard, S., Ronimus, R. S., & Morgan, H. W. (2001). Inhibition of phosphofructokinases by copper(II). FEMS Microbiology Letters, 197, 105–109.

    Article  CAS  Google Scholar 

  23. Lauera, M. M., Bento de Oliveirab, C., Lie Inocencio Yanob, N., & Bianchini, A. (2012). Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comparative Biochemistry and Physiology - Part C, 156(3–4), 140–147.

    Google Scholar 

  24. Albert, L., Nelson, L. D., & Cox, M. M. (2000). Principles of biochemistry (3rd ed.). New York: W.H. Freeman.

    Google Scholar 

  25. Tavsan, Z., & Ayar Kayali, H. (2013). The effect of iron and copper as an essential nutrient on mitochondrial electron transport system and lipid peroxidation in Trichoderma harzianum. Applied Biochemistry and Biotechnology, 170(7), 1665–1675.

    Article  CAS  Google Scholar 

  26. Krotkiewska, B., & Banaś, T. (1992). Interaction of Zn2+ and Cu2+ ions with glyceraldehyde-3-phosphate dehydrogenase from bovine heart and rabbit muscle. The International Journal of Biochemistry, 24(9), 1501–1505.

    Article  CAS  Google Scholar 

  27. Malthankar, G. V., White, B. K., Bhushan, A., Daniels, C. K., Rodnick, K. J., & Lai, J. C. (2004). Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocytoma cells is associated with manganese-induced cell death. Neurochemical Research, 29(4), 709–717.

    Article  CAS  Google Scholar 

  28. Oexle, H., Gnaiger, E., & Weiss, G. (1999). Iron-dependent changes in cellular energy metabolism: influence on citric acid cycle and oxidative phosphorylation. Biochimica et Biophysica Acta, 1413, 99–107.

    Article  CAS  Google Scholar 

  29. Mailloux, R. J., Bériault, R., Lemire, J., Singh, R., Chénier, D. R., Hamel, R. D., & Appanna, V. D. (2007). The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE, 2(8), e690.

    Article  Google Scholar 

  30. Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T. M., Prinz, W. A., Bard, M., & Philpott, C. C. (2010). Metabolic response to iron deficiency in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 285(19), 14823–14833.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hulya Ayar Kayali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavsan, Z., Ayar Kayali, H. The Variations of Glycolysis and TCA Cycle Intermediate Levels Grown in Iron and Copper Mediums of Trichoderma harzianum . Appl Biochem Biotechnol 176, 76–85 (2015). https://doi.org/10.1007/s12010-015-1535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1535-0

Keywords

Navigation