Applied Biochemistry and Biotechnology

, Volume 175, Issue 8, pp 3585–3598 | Cite as

Genome-Wide Analysis and Differential Expression of Chitinases in Banana Against Root Lesion Nematode (Pratylenchus coffeae) and Eumusa Leaf Spot (Mycosphaerella eumusae) Pathogens

  • S. BackiyaraniEmail author
  • S. Uma
  • S. Nithya
  • A. Chandrasekar
  • M. S. Saraswathi
  • R. Thangavelu
  • M. Mayilvaganan
  • P. Sundararaju
  • N. K. Singh


Knowledge on structure and conserved domain of Musa chitinase isoforms and their responses to various biotic stresses will give a lead to select the suitable chitinase isoform for developing biotic stress-resistant genotypes. Hence, in this study, chitinase sequences available in the Musa genome hub were analyzed for their gene structure, conserved domain, as well as intron and exon regions. To identify the Musa chitinase isoforms involved in Pratylenchus coffeae (root lesion nematode) and Mycosphaerella eumusae (eumusa leaf spot) resistant mechanisms, differential gene expression analysis was carried out in P. coffeae- and M. eumusae-challenged resistant and susceptible banana genotypes. This study revealed that more number of chitinase isoforms (CIs) were responses upon eumusa leaf spot stress than nematode stress. The nematode challenge studies revealed that class II chitinase (GSMUA_Achr9G16770_001) was significantly overexpressed with 6.75-fold (with high fragments per kilobase of exon per million fragments mapped (FPKM)) in resistant genotype (Karthobiumtham-ABB) than susceptible (Nendran-AAB) genotype, whereas when M. eumusae was challenge inoculated, two class III CIs (GSMUA_Achr9G25580_001 and GSMUA_Achr8G27880_001) were overexpressed in resistant genotype (Manoranjitham-AAA) than the susceptible genotype (Grand Naine-AAA). However, none of the CIs were found to be commonly overexpressed under both stress conditions. This study reiterated that the chitinase genes are responding differently to different biotic stresses in their respective resistant genotypes.


Banana Chitinase isoforms Nematode Eumusa leaf spot Digital gene expression Illumina 



This work was supported by the Indian Council of Agricultural Research (ICAR) Plan fund for the Project No. 2000711005 to S.B. and ICAR grants on Network project on transgenic crops to S.U. We would like to thank the Director, National Research Centre for Banana (NRCB) and ICAR for the facilities provided for the conduct of this study. We immensely thank to Mr. K. Raja and A.S. Saravanakumar for assisting in pathogen inoculation, sample collection, and preparation.

Supplementary material

12010_2015_1528_MOESM1_ESM.docx (15 kb)
Supplementary Table S1 Details of Illumina sequence reads of NCS, NUS, NCR and NUR (DOCX 14 kb)
12010_2015_1528_MOESM2_ESM.xlsx (15 kb)
Supplementary Table S2 (XLSX 14 kb)
12010_2015_1528_MOESM3_ESM.xlsx (13 kb)
Supplementary Table S3 (XLSX 13 kb)


  1. 1.
    Thammaiah, N., Kulkarni, M. S., Kulkarni, S. K., & Patil, P. B. (2005). Estimation of loss in yield due to Sigatoka leaf spot disease of banana CV. Rajapuri Musa AAB. Indian Phytopathology, 58(1), 25–29.Google Scholar
  2. 2.
    Backiyarani, S., Sundararaju, P., Mayilvaganan, M., Uma, S., Saraswathi, M. S., & Arunkumar, G. (2013). Time course expression studies during MusaPratylenchus coffeae interaction. Indian Journal of Horticulture, 70(2), 217–22.Google Scholar
  3. 3.
    Elango, F., Taboral, P., Vega, J.M., Senanayake, Y.D.A. & Sangakkura, U .R. (1999). 5th Inter. Conf. on Kyusei nature farming. Proc. Conf. on Kyusei Nature Farming and effective micro-organisms for agricultural and environmental sustainability. Bangkok, Thailand, 23-26 October 1997, pp. 226-229.Google Scholar
  4. 4.
    Roux, N. (2004). In J. Mohan & S. R. Swennen (Eds.), Banana improvement—cellular, molecular biology and induced mutations (pp. 23–32). Enfield: Science Publishers, Inc.Google Scholar
  5. 5.
    Punja, Z. K., & Zhang, Y. Y. (1993). Plant chitinases and their roles in resistance to fungal diseases. Journal Nematology, 25, 526–540.Google Scholar
  6. 6.
    Chen, X., Niks, R. E., Hedley, P. E., Morris, J., Druka, A., Marcel, T. C., Vels, A., & Waugh, R. (2010). Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics, 11, 629.Google Scholar
  7. 7.
    Grover, A. (2012). Plant chitinases: genetic diversity and physiological roles. Critical Reviews in Plant Sciences, 31(1), 57–73.CrossRefGoogle Scholar
  8. 8.
    Prasad, K., Bhatnagar-Mathur, P., Waliyar, F., & Sharma, K. K. (2013). Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. Journal of Plant Biochemistry and Biotechnology, 22(2), 222–233.CrossRefGoogle Scholar
  9. 9.
    Kalaiarasan, P., Sivakumar, M., & Sudhakar, D. (2008). Engineering genetic resistance against root-knot nematode, Meloidogyne incognita in tomato using a antifungal rice chitinase gene (chi 11). Indian Journal of Nematology, 38(1), 34–41.Google Scholar
  10. 10.
    Passos, M. A., de Oliveira Cruz, V., Emediato, F. L., de Camargo Teixeira, C., Souza, M. T., Matsumoto, T., RennóAzevedo, V. C., Ferreira, C. F., Amorim, E. P., de Alencar Figueiredo, L. F., Martins, N. F., de Jesus Barbosa Cavalcante, M., Baurens, F. C., Da Silva, O. B., Jr., & Pappas, G. J., Jr. (2012). Development of expressed sequence tag and expressed sequence tag-simple sequence repeat marker resources for Musa acuminata. AoB Plants, 2012, 1–63.CrossRefGoogle Scholar
  11. 11.
    Backiyarani, S., Uma, S., Arunkumar, G., Saraswathi, M. S., & Sundararaju, P. (2014). Differentially expressed genes in incompatible interactions of Pratylenchus coffeae with Musa using suppression subtractive hybridization. Physiological and Molecular Plant Pathology, 86, 11–18.CrossRefGoogle Scholar
  12. 12.
    Neuhaus, J. M., Ahl-Goy, P., Him, U., Flores, S., & Meins, F. (1991). High level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Molecular Biology, 16, 141–151.CrossRefGoogle Scholar
  13. 13.
    Kramer, K. J., Muthukrishnan, S., Lowell, J., & White, F. (1997). In Carozzi & M. Koziel (Eds.), Advances in insect control: the role of transgenic plants (pp. 185–193). Bristol: Taylor and Francis.Google Scholar
  14. 14.
    Ornatowski, W., Jayaraj, J., Todd, T. C., Schapaugh, W. T., Muthukrishnan, S., & Trick, H. N. (2004). Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean. Vitro Cellular & Developmental Biology - Plant, 40(3), 260–265.CrossRefGoogle Scholar
  15. 15.
    Brants, A., Brown, C. R., & Earle, E. D. (2000). Trichoderma harzianum endochitinase does not provide resistance to Meloidogyne hapla in transgenic tobacco. Journal of Nematology, 32(3), 289–296.Google Scholar
  16. 16.
    Sela-Buurlage, M. B., Ponstein, A. S., Bres-Vloemans, S. A., Melchers, L. S., Van Den Elzen, P. J. M., & Cornelissen, B. J. C. (1993). Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1,3-glucanases exhibit antifungal activity. Plant Physiology, 101, 857–863.Google Scholar
  17. 17.
    Samac, D. A., Hironake, C. M., Yallaly, P. E., & Shah, D. M. (1990). Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiology, 93, 907–914.CrossRefGoogle Scholar
  18. 18.
    Ji, C., Norton, R. A., Wicklow, D. T., & Dowd, P. F. (2000). Existence of chitinase activity in mature corn kernels (Zea mays L.). Journal of Agricultural and Food Chemistry, 48, 507–511.CrossRefGoogle Scholar
  19. 19.
    Bagnaresi, P., Sala, T., Irdani, T., Scotto, C., Lamontanara, A., Rotino, G. L., Sestili, S., Cattivelli, L., & Sabatini, E. (2013). Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics, 14, 540.Google Scholar
  20. 20.
    Yeh, K. W., Chen, J. C., Lin, M. I., Chen, Y. M., & Lin, C. Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam): a tuber storage protein with trypsin inhibitory activity. Plant Molecular Biology, 33, 565–570.CrossRefGoogle Scholar
  21. 21.
    Noble, W. S. (2009). How does multiple testing correction work? Nature Biotechnology, 27, 1135–1137.CrossRefGoogle Scholar
  22. 22.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.CrossRefGoogle Scholar
  23. 23.
    Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U., & Vad, K. Plant chitinases. Plant Journal, 3, 31-40.Google Scholar
  24. 24.
    Neuhaus, J.-M., Fritig, B., Linthorst, H. J. M., Meins, F., Jr., Mikkelsen, J. D., & Ryals, J. (1996). A revised nomenclature for chitinase genes. Plant Molecular Biology Report, 14, 102–104.CrossRefGoogle Scholar
  25. 25.
    Xiang, L., Etxeberria, E., & Van den Ende, W. (2013). Vacuolar protein sorting mechanisms in plants. FEBS Journal, 280(4), 979–93.CrossRefGoogle Scholar
  26. 26.
    Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Journal of Biochemistry, 280, 309–316.Google Scholar
  27. 27.
    Jiang, C., Huang, R. F., Song, J. L., Huang, M. R., & Xu, L. (2013). Genome wide analysis of the chitinase gene family in Populus trichocarpa. Journal of Genetics, 92, 121–125.CrossRefGoogle Scholar
  28. 28.
    Moeller, L., Gan, Q., & Wang, K. (2009). A bacterial signal peptide is functional in plants and directs proteins to the secretory pathway. Journal of Experimental Botany, 60, 3337–3352.CrossRefGoogle Scholar
  29. 29.
    Vaaje-Kolstad, G., Vasella, A., Peter, M. G., Netter, C., Houston, D. R., et al. (2004). Interactions of a family 18 chitinase with the designed inhibitor Hm508 and its degradation product, chitobiono-d-lactone. Journal of Biological Chemistry, 279, 3612–3619.CrossRefGoogle Scholar
  30. 30.
    Van Aalten, D. M., Komander, D., Synstad, B., Gaseidnes, S., Peter, M. G., & Eijsink, V. G. (2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proceedings of the National Academy of Sciences USA, 98, 8979–8984.CrossRefGoogle Scholar
  31. 31.
    Hoell, I. A., Dalhus, B., Heggset, E. B., Aspmo, S. I., & Eijsink, V. G. H. (2006). Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes. FEBS Letters, 273, 4889–4900.CrossRefGoogle Scholar
  32. 32.
    Araki, T., & Torikata, T. (1995). Structural classification of plant chitinases: two subclasses in class I and class II chitinases. Bioscience Biotechnology and Biochemistry, 59, 336–338.CrossRefGoogle Scholar
  33. 33.
    Tellam, R. L. (1996). Protein motifs in filarial chitinases: an alternative view. Parasitology Today, 12, 291–292.CrossRefGoogle Scholar
  34. 34.
    Van Scheltinga, A. C. T., Hennig, M., & Dijkstra, B. W. J. (1996). The 1.8 angstrom resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolasefamily 18. Molecular Biology, 262, 243–257.CrossRefGoogle Scholar
  35. 35.
    Hamel, F., Boivin, R., Tremblay, C., & Bellemare, G. (1997). Structural and evolutionary relationships among chitinases of flowering plants. Journal of Molecular Evolution, 44(6), 614–624.CrossRefGoogle Scholar
  36. 36.
    Ohme-Takagi, M., Meins, J. F., & Shinshi, H. (1998). A tobacco gene encoding a novel basic class II chitinase: a putative ancestor of basic class I and acidic class II chitinase genes. Molecular Genetics and Genomics, 259, 511–515.CrossRefGoogle Scholar
  37. 37.
    Alagna, F. (2013). Innovative Transcriptomics approaches for large scale identification of genes involved in plant secondary metabolism. Journal Plant Biochemistry Physiology, 1, e107. doi: 10.4172/2329-9029.1000e107.Google Scholar
  38. 38.
    Hirao, T., Fukatsu, E., & Watanabe, A. (2012). Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization. BMC Plant Biology, 12, 13.CrossRefGoogle Scholar
  39. 39.
    Nielsen, K. K., Mikkelsen, J. D., Kragh, K. M., & Bojsen, K. (1993). An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Molecular Plant Microbe Interaction, 6, 495–506.CrossRefGoogle Scholar
  40. 40.
    Vasconcelos, E. A., Santana, C. G., Godoy, C. V., Seixas, C. D., Silva, M. S., Moreira, L. R., Oliveira-Neto, O. B., Price, D., Fitches, E., Filho, E. X., Mehta, A., Gatehouse, J. A., & Grossi-De-Sa, M. F. (2011). A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects Soybean Asian rust (Phakopsora pachyrhizi) spore germination. BMC Biotechnology, 7, 11–14.Google Scholar
  41. 41.
    Meuriota, F., Noqueta, C., Avicea, J. C., Volenecb, J. J., Cunninghamb, S. M., Sorsb, T. G., Caillota, S., & Ourrya, A. (2004). Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiologia Plantarum, 120, 113–123.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Backiyarani
    • 1
    Email author
  • S. Uma
    • 1
  • S. Nithya
    • 1
  • A. Chandrasekar
    • 1
  • M. S. Saraswathi
    • 1
  • R. Thangavelu
    • 1
  • M. Mayilvaganan
    • 1
  • P. Sundararaju
    • 1
  • N. K. Singh
    • 2
  1. 1.ICAR-National Research Centre for BananaTrichyIndia
  2. 2.ICAR-National Research Centre for Plant BiotechnologyNew DelhiIndia

Personalised recommendations