Applied Biochemistry and Biotechnology

, Volume 176, Issue 1, pp 56–65 | Cite as

Side Effect of Tris on the Interaction of Amyloid β-peptide with Cu2+: Evidence for Tris–Aβ–Cu2+ Ternary Complex Formation

  • Yannan Bin
  • Zhongxiu Jiang
  • Juan Xiang


The interaction of amyloid β-peptide (Aβ) with Cu2+ is crucial to the development of neurotoxicity in Alzheimer’s disease (AD). Many recent studies show a variation on the dissociation constant of Aβ–Cu2+ under different solvent conditions. Among various buffers, the Tris(hydroxymethyl)aminomethane (Tris) buffer is the most reliable chelator of Cu2+. However, as a typical nucleophilic reagent capable of binding peptides, the behavior of Tris should be more complicated. In this work, the effect of Tris on the interaction of Aβ with Cu2+ was investigated. Under acidic conditions, Tris–Aβ–Cu2+ ternary complex was identified by electrospray ionization mass spectrometry and transmission electron microscopy. The results of surface plasmon resonance reveal that the formation of the ternary complex increases the dissociation constant by almost 1 order of magnitude. Consequently, the assessment of toxicity indicates that the generation of · OH induced by the Aβ–Cu2+ complex was enhanced in the presence of Tris. The work reveals the significant side effect of Tris on the interaction of Aβ with Cu2+, which will greatly improve the quantitative investigation on Aβ–Cu2+ interaction and be helpful for the in-depth understanding of the roles of Aβ and Cu2+ in AD neuropathology.


Amyloid β-peptide Copper ion Tris Ternary complex Surface plasmon resonance 



This work was supported by the National Natural Science Foundation of China (21273288, 20773165, and 31470775), the Fundamental Research Funds for the Central Universities (2011JQ1004), the Doctoral Fund of the Ministry of Education of China (20120162110018), and the Initial Foundation of Doctoral Scientific Research in Anhui University (01001319).


  1. 1.
    Faller, P., and Hureau, C. (2009). Dalton Transactions, 1080-1094Google Scholar
  2. 2.
    Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., & Beyreuther, K. (1985). Proceedings of the National Academy of Sciences, 82, 4245–4249.CrossRefGoogle Scholar
  3. 3.
    Lovell, M., Robertson, J., Teesdale, W., Campbell, J., & Markesbery, W. (1998). Journal of the Neurological Sciences, 158, 47–52.CrossRefGoogle Scholar
  4. 4.
    Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M. E., Romano, D. M., et al. (1998). Journal of Biological Chemistry, 273, 12817–12826.CrossRefGoogle Scholar
  5. 5.
    Smith, D. P., Ciccotosto, G. D., Tew, D. J., Fodero-Tavoletti, M. T., Johanssen, T., Masters, C. L., et al. (2007). Biochemistry, 46, 2881–2891.CrossRefGoogle Scholar
  6. 6.
    Nadal, R. C., Rigby, S. E., & Viles, J. H. (2008). Biochemistry, 47, 11653–11664.CrossRefGoogle Scholar
  7. 7.
    Nakamura, M., Shishido, N., Nunomura, A., Smith, M. A., Perry, G., Hayashi, Y., et al. (2007). Biochemistry, 46, 12737–12743.CrossRefGoogle Scholar
  8. 8.
    Hureau, C., & Faller, P. (2009). Biochimie, 91, 1212–1217.CrossRefGoogle Scholar
  9. 9.
    Sarell, C. J., Wilkinson, S. R., & Viles, J. H. (2010). Journal of Biological Chemistry, 285, 41533–41540.CrossRefGoogle Scholar
  10. 10.
    Miura, T., Suzuki, K., Kohata, N., & Takeuchi, H. (2000). Biochemistry, 39, 7024–7031.CrossRefGoogle Scholar
  11. 11.
    Dorlet, P., Gambarelli, S., Faller, P., & Hureau, C. (2009). Angewandte Chemie, 121, 9437–9440.CrossRefGoogle Scholar
  12. 12.
    Drew, S. C., Masters, C. L., & Barnham, K. J. (2009). Journal of the American Chemical Society, 131, 8760–8761.CrossRefGoogle Scholar
  13. 13.
    Drew, S. C., Noble, C. J., Masters, C. L., Hanson, G. R., & Barnham, K. J. (2009). Journal of the American Chemical Society, 131, 1195–1207.CrossRefGoogle Scholar
  14. 14.
    Alí-Torres, J., Maréchal, J. D., Rodríguez-Santiago, L., & Sodupe, M. (2011). Journal of the American Chemical Society, 133, 15008–15014.CrossRefGoogle Scholar
  15. 15.
    Hatcher, L. Q., Hong, L., Bush, W. D., Carducci, T., & Simon, J. D. (2008). The Journal of Physical Chemistry B, 112, 8160–8164.CrossRefGoogle Scholar
  16. 16.
    Maiti, N. C., Jiang, D., Wain, A. J., Patel, S., Dinh, K. L., & Zhou, F. (2008). Journal of Physical Chemistry B, 112, 8406–8411.CrossRefGoogle Scholar
  17. 17.
    Tougu, V., Karafin, A., & Palumaa, P. (2008). Journal of Neurochemistry, 104, 1249–1259.CrossRefGoogle Scholar
  18. 18.
    Sarell, C. J., Syme, C. D., Rigby, S. E., & Viles, J. H. (2009). Biochemistry, 48, 4388–4402.CrossRefGoogle Scholar
  19. 19.
    Rózga, M., Kłoniecki, M., Dadlez, M., & Bal, W. (2009). Chemical research in toxicology, 23, 336–340.CrossRefGoogle Scholar
  20. 20.
    Tõugu, V., Tiiman, A., & Palumaa, P. (2011). Metallomics, 3, 250–261.CrossRefGoogle Scholar
  21. 21.
    Righetti, P. G., Magnusdottir, S., Gelfi, C., & Perduca, M. (2001). Journal of Chromatography A, 920, 309–316.CrossRefGoogle Scholar
  22. 22.
    Sun, M., Chen, J., Liu, X., & Zhao, Y. (2004). Journal of Molecular Structure: THEOCHEM, 668, 47–49.CrossRefGoogle Scholar
  23. 23.
    Quan, L., Wei, D., Jiang, X., Liu, Y., Li, Z., Li, N., et al. (2008). Analytical Biochemistry, 378, 144–150.CrossRefGoogle Scholar
  24. 24.
    Taha, M., & Lee, M. J. (2010). Physical Chemistry Chemical Physics, 12, 12840–12850.CrossRefGoogle Scholar
  25. 25.
    Jiang, D., Li, X., Williams, R., Patel, S., Men, L., & Wang, Y. (2009). Biochemistry, 48, 7939–7947.CrossRefGoogle Scholar
  26. 26.
    Rózga, M., Protas, A. M., Jabłonowska, A., Dadlez, M., and Bal, W. (2009). Chemical Communications, 1374-1376.Google Scholar
  27. 27.
    Bin, Y., Chen, S., & Xiang, J. (2013). Journal of Inorganic Biochemistry, 119, 21–27.CrossRefGoogle Scholar
  28. 28.
    Xin, Y., Gao, Y., Guo, J., Chen, Q., Xiang, J., & Zhou, F. (2008). Biosensors and Bioelectronics, 24, 369–375.CrossRefGoogle Scholar
  29. 29.
    Myszka, D. G. (1997). Current Opinion in Biotechnology, 8, 50–57.CrossRefGoogle Scholar
  30. 30.
    Shin, B., & Saxena, S. (2011). The Journal of Physical Chemistry A, 115, 9590–9602.CrossRefGoogle Scholar
  31. 31.
    Wang, Q., Shah, N., Zhao, J., Wang, C., Zhao, C., Liu, L., et al. (2011). Physical Chemistry Chemical Physics, 13, 15200–15210.CrossRefGoogle Scholar
  32. 32.
    Compagnini, A., Cunsolo, V., Foti, S., & Saletti, R. (2001). Proteomics, 1, 967–974.CrossRefGoogle Scholar
  33. 33.
    Burcham, P. C., Fontaine, F. R., Petersen, D. R., & Pyke, S. M. (2003). Chemical Research in Toxicology, 16, 1196–1201.CrossRefGoogle Scholar
  34. 34.
    Pecci, L., Montefoschi, G., & Cavallini, D. (1997). Biochemical and Biophysical Research Communications, 235, 264–267.CrossRefGoogle Scholar
  35. 35.
    Williams, D. E., & Reisfeld, R. A. (1964). Annals of the New York Academy of Sciences, 121, 373–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Institute of Health Sciences, School of Life SciencesAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations