Skip to main content
Log in

MicroRNA-10b Triggers the Epithelial–Mesenchymal Transition (EMT) of Laryngeal Carcinoma Hep-2 Cells by Directly Targeting the E-cadherin

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Laryngeal carcinoma is the second most common malignancy of the head and neck squamous cell carcinoma. Therefore, there is an urgent need to understand the molecular mechanism of its metastasis. The present study was designed to investigate effects of miR-10b on the invasion and migration of laryngeal Hep-2 cells. We found that miR-10b had limited effects on cell proliferation; however, it can significantly promote the migration and invasion of Hep-2 cells. Further studies revealed that overexpression of miR-10b can induce the epithelial–mesenchymal transition (EMT) of Hep-2 cells by acquiring mesenchymal spindle-like morphology and increasing the expression of N-cadherin (N-Cad) with a concomitant decrease of E-cadherin (E-Cad). However, the messenger RNA (mRNA) and protein level of transcription factors such as Snail, Slug, Twist and ZEB was not changed during this process. Bioinformatic analysis revealed that miR-10b can directly target CDH1 (E-Cad gene) at nucleotides 461 and 481 within the 3′-UTR. This was confirmed by the results that miR-10 downregulated the protein and mRNA levels of E-Cad via a time-dependent manner and luciferase analysis by use of four-nucleotide substitution in the core binding sites. The present study provided a better understanding of laryngeal carcinoma metastasis and the roles of miR-10b during this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–5.

    Article  CAS  Google Scholar 

  2. Baranwal, S., & Alahari, S. K. (2009). Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochemical and Biophysical Research Communications, 384, 6–11.

    Article  CAS  Google Scholar 

  3. Beach, S., Tang, H., Park, S., et al. (2008). Snail is a repressor of RK1P transcription in metastatic prostate cancer cells. Oncogene, 27, 2243–8.

    Article  CAS  Google Scholar 

  4. Bourguignon, L. Y., Wong, G., Earle, C., et al. (2010). Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. The Journal of Biological Chemistry, 285, 36721–35.

    Article  CAS  Google Scholar 

  5. Burk, U., Schubert, J., Wellner, U., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–9.

    Article  CAS  Google Scholar 

  6. Cano, A., Perez-Moreno, M. A., Rodrigo, I., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.

    Article  CAS  Google Scholar 

  7. Cano, A., Peinado, H., & Olmeda, D. (2007). Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–28.

    Article  Google Scholar 

  8. Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–50.

    Article  CAS  Google Scholar 

  9. Cosetti, M., Yu, G. P., & Schantz, S. P. (2008). Five-year survival rates and time trends of laryngeal cancer in the US population. Archives of Otolaryngology, 134, 370–9.

    Article  Google Scholar 

  10. Dong, C. G., Wu, W. K., Feng, S. Y., et al. (2012). Co-inhibition of microRNA-10b and microRNA-21 exerts synergistic inhibition on the proliferation and invasion of human glioma cells. International Journal of Oncology, 41, 1005–12.

    CAS  Google Scholar 

  11. Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet, 369, 1742–57.

    Article  CAS  Google Scholar 

  12. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2, 161–74.

    Article  CAS  Google Scholar 

  13. Frampton, A. E., Krell, J., Zhang, Y., et al. (2012). The role of miR-10b in metastatic pancreatic ductal adenocarcinoma. Surgery, 152, 936–8. author reply 8.

    Article  Google Scholar 

  14. Garzon, R., Fabbri, M., Cimmino, A., et al. (2006). MicroRNA expression and function in cancer. Trends in Molecular Medicine, 12, 580–7.

    Article  CAS  Google Scholar 

  15. Hunter, K. D., Parkinson, E. K., & Harrison, P. R. (2005). Profiling early head and neck cancer. Nature Reviews Cancer, 5, 127–35.

    Article  CAS  Google Scholar 

  16. Jeschke, U., Mylonas, I., Kuhn, C., et al. (2007). Expression of E-cadherin in human ductal breast cancer carcinoma in situ, invasive carcinomas, their lymph node metastases, their distant metastases, carcinomas with recurrence and in recurrence. Anticancer Research, 27, 1969–74.

    CAS  Google Scholar 

  17. Jordan, N. V., Johnson, G. L., & Abell, A. N. (2011). Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle, 10, 2865–73.

    Article  CAS  Google Scholar 

  18. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation, 119, 1420–8.

    Article  CAS  Google Scholar 

  19. Khvorova A, Reynolds A, Jayasena SD (2003). Functional siRNAs and miRNAs exhibit strand bias (vol 115, pg 209, 2003). Cell, 115, 505-.

  20. Kloosterman, W. P., & Plasterk, R. H. A. (2006). The diverse functions of MicroRNAs in animal development and disease. Developmental Cell, 11, 441–50.

    Article  CAS  Google Scholar 

  21. Lamouille, S., Subramanyam, D., Blelloch, R., et al. (2013). Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Current Opinion in Cell Biology, 25, 200–7.

    Article  CAS  Google Scholar 

  22. Liu, Y., Zhao, J., Zhang, P. Y., et al. (2012). MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Medical Science Monitor, 18, BR299–308.

    CAS  Google Scholar 

  23. Liu, Z., Zhu, J. M., Cao, H., et al. (2012). miR-10b promotes cell invasion through RhoC-AKT signaling pathway by targeting HOXD10 in gastric cancer. International Journal of Oncology, 40, 1553–60.

    CAS  Google Scholar 

  24. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. Nature, 449, 682–U2.

    Article  CAS  Google Scholar 

  25. Michael, Z., & Eric, G. N. (2009). Biomarkers for epithelial-mesenchymal transitions. The Journal of Clinical Investigation, 119, 1429–37.

    Article  Google Scholar 

  26. Nakata, K., Ohuchida, K., Mizumoto, K., et al. (2011). MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery, 150, 916–22.

    Article  Google Scholar 

  27. Preis, M., Gardner, T. B., Gordon, S. R., et al. (2011). MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17, 5812–21.

    Article  CAS  Google Scholar 

  28. Rothberg, B. E. G., & Bracken, M. B. (2006). E-cadherin immunohistochemical expression as a prognostic factor in infiltrating ductal carcinoma of the breast: a systematic review and meta-analysis. Breast Cancer Research and Treatment, 100, 139–48.

    Article  Google Scholar 

  29. Sarrio, D., Palacios, J., Hergueta-Redondo, M., et al. (2009). Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer, 9.

  30. Siegel, R., Naishadham, D., & Jemal, A. (2014). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30.

    Google Scholar 

  31. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–54.

    Article  CAS  Google Scholar 

  32. Thiery, J. P., Acloque, H., Huang, R. Y. J., et al. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–90.

    Article  CAS  Google Scholar 

  33. Tian, Y., Luo, A., Cai, Y., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. The Journal of Biological Chemistry, 285, 7986–94.

    Article  CAS  Google Scholar 

  34. Tomaskovic-Crook, E., Thompson, E., & Thiery, J. (2009). Epithelial to mesenchymal transition and breast cancer. Breast Cancer Research, 11, 213.

    Article  Google Scholar 

  35. Vesuna, F., van Diest, P., Chen, J. H., et al. (2008). Twist is a transcriptional repressor of E-cadherin gene expression in breast cancer. Biochem Biophy Res Com, 367, 235–41.

    Article  CAS  Google Scholar 

  36. Vuoriluoto, K., Haugen, H., Kiviluoto, S., et al. (2011). Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 30, 1436–48.

    Article  CAS  Google Scholar 

  37. Zhao, Y., & Srivastava, D. (2007). A developmental view of microRNA function. Trends in Biochemical Sciences, 32, 189–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 81172584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Sun, J., Wang, B. et al. MicroRNA-10b Triggers the Epithelial–Mesenchymal Transition (EMT) of Laryngeal Carcinoma Hep-2 Cells by Directly Targeting the E-cadherin. Appl Biochem Biotechnol 176, 33–44 (2015). https://doi.org/10.1007/s12010-015-1505-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1505-6

Keywords

Navigation