Skip to main content
Log in

Combined Potentiating Action of Phytochemical(s) from Cinnamomum tamala and Aloe vera for their Anti-diabetic and Insulinomimetic Effect Using In Vivo Rat and In Vitro NIH/3T3 Cell Culture System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present investigation was undertaken to analyze the ethanolic extracts of leaves of Cinnamomum tamala and Aloe vera for their anti-diabetic and insulinomimitic effect by determining the levels of blood sugar, glycosylated hemoglobin, and serum lipid profile (total cholesterol, triglycerides, high density lipoprotein (HDL), and low density lipoprotein (LDL)) after daily administration of each alone and in combined at 250 mg/kg in alloxan (ALX)-induced diabetic rats. Treatment of diabetic rats with the extracts restored the elevated biochemical parameters significantly. The anti-diabetic effect further potentiated the insulin signaling pathway by co-administration of both extracts. The molecular mechanisms of modulating gene expression and cellular signaling through the insulin receptor were also evaluated on specific targets of the insulin signaling pathway, including insulin receptor substrate (IRS), phosphatidylinositol 3-kinase (PI3-K), AKT, and the glucose transporter (GLUT4) on NIH/3T3 cell line by western blotting, ELISA, semiquantitative RT-PCR, and real-time PCR. The active principle of both extracts revealed insulin mimicking effect as indicated by increased expression of pIRS1 and pAKT in time-dependent manner. There was no significant difference in PI3-K content between unchallenged and challenged groups. Enhanced expression of GLUT-4 transcript further suggested that the Cinnamomum and Aloe phytochemicals could serve as a good adjuvant in the present armamentarium of anti-diabetic drugs by either mimicking or improving insulin action. This study reveals that ethanolic extracts of C. tamala and A. vera have potent therapeutic efficacy and prospect for the development of phytomedicine for diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. American Diabetes Association: Diabetes. (1996). Vital Statistics (pp. 13–20). Alexandria: American Diabetes Association.

    Google Scholar 

  2. Mohan, V., Sandeep, S., Deepa, R., Shah, B., & Varghese, C. (2007). Indian Journal of Medical Research, 125, 217–230.

    CAS  Google Scholar 

  3. Thies, R. S., Webster, N. J., & McClain, D. A. (1990). The Journal of Biological Chemistry, 265, 10132–10137.

    CAS  Google Scholar 

  4. Kar, A., Choudhary, B. K., & Bandyopadhyay, N. G. (2003). Journal of Ethnopharmacology, 84, 105–108.

    Article  Google Scholar 

  5. Kapoor, L. D. (2000). CRC handbook of Ayurvedic medicinal plants (p. 117). Boca Raton, FL: CRC Press.

    Google Scholar 

  6. Nautiyal, S., & Kaechele, H. (2007). Environmental Impact Assessment Review, 27, 109–125.

    Article  Google Scholar 

  7. Gambhire, M. N., Juvekar, A. R., & Wankhede, S. S. (2009). Journal of Pharmacy Research, 2(9), 1521–1524.

    Google Scholar 

  8. Gupta, V., & Sharma, M. (2010). Current Research Journal of Biological Sciences, 2(4), 246–249.

    Google Scholar 

  9. Lima, Z. P., Severi, J. A., Pellizzon, C. H., Brito, A. R., & Solis, P. N. (2010). Journal of Ethnopharmacology, 128, 537–540.

    Article  Google Scholar 

  10. Rao, A. R., & Hashim, S. (1995). Nutrition and Cancer, 23, 91–101.

    Article  CAS  Google Scholar 

  11. Kumanan, R., Manimaran, S., Khan, S., Dhanabal, S. P., & Nanjan, M. J. (2010). International Journal of Pharmacology Biomedical Research., 1(2), 69–72.

    Google Scholar 

  12. Chakraborty, U., & Das, H. (2010). Global Journal of Biotechnology and Biochemistry., 5(1), 12–18.

    Google Scholar 

  13. Bisht, S., & Sisodia, S. S. (2011). Indian Journal of Pharmacology., 43(5), 582–585.

    Article  Google Scholar 

  14. Vazquez, B., et al. (1996). Journal of Ethnopharmacology, 55, 69–75.

    Article  CAS  Google Scholar 

  15. Langmead, L., et al. (2004). Alimentary Pharmacology Therapy, 19, 521–527.

    Article  CAS  Google Scholar 

  16. Boudreau, M. D., & Beland, F. A. (2006). Journal of Environmental Science and Health, 24, 103–154.

    Article  CAS  Google Scholar 

  17. Dixit, V. P., & Joshi, S. (1983). Indian Journal of Medical Research, 78, 417–421.

    CAS  Google Scholar 

  18. Yongchaiyudha, S., Rungpitarangsi, V., Bunyapraphatsara, N., & Chokechaijaroenporn, O. (1996). Phytomedicine, 3, 241–243.

    Article  CAS  Google Scholar 

  19. Tanaka, M., et al. (2006). Biological and Pharmaceuticals Bulletin, 29, 1418–1422.

    Article  CAS  Google Scholar 

  20. Kumar, R., Sharma, B., Tomar, N. R., Roy, P., Gupta, A. K., & Kumar, A. (2011). Applied Biochemistry and Biotechnology, 164, 1246–1256.

    Article  CAS  Google Scholar 

  21. Rehman, S., Jafri, S. A., Hassan, S., Ahmed, I., & Naim, M. (2011). Libyan Agriculture Research Center Journal International., 2, 29–32.

    Google Scholar 

  22. Grover, J. K., Yadav, S., & Vats, V. (2002). Journal of Ethnopharmacology, 81, 81–100.

    Article  CAS  Google Scholar 

  23. Sadasivam, S., & Manickam, A. (1996). Carbohydrates. In S. Sadasivam & A. Manickam (Eds.), Methods in biochemistry (pp. 11–12). New Delhi: New Age International Pvt Ltd.

    Google Scholar 

  24. Rehman, S.-U. (1984). Toxicological Letters, 21, 333.

    Article  Google Scholar 

  25. Madesh, M., & Balasubramanian, K. A. (1998). Indian Journal of Biochemistry and Biophysics, 35, 184.

    CAS  Google Scholar 

  26. Sedlak, J., & Linday, R. H. (1968). Estimation of total, protein bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, 25, 192.

    Article  CAS  Google Scholar 

  27. Lillie, R. D. (1965). Histopathologic technic and practical histochemistry (3rd ed., p. 715). New York: McGrawHill.

    Google Scholar 

  28. Laemmli, U. K. (1970). Nature, 227, 680–185.

    Article  CAS  Google Scholar 

  29. Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames: Iowa State University Press.

    Google Scholar 

  30. Etuk, E. U., & Muhammed, B. J. (2010). International Journal of Research in Pharmaceutical Sciences., 1(2), 139–142.

    CAS  Google Scholar 

  31. Mohajeri, D., Tabrizi, B. A., Mousavi, G., & Mesgari, M. (2008). Research Journal of Biological Sciences, 3(9), 1102–1108.

    Google Scholar 

  32. Solomon, G., Raosaheb, K. K., & Najma, Z. B. (1999). Indian Journal of Experimental Biology, 37, 200–202.

    Google Scholar 

  33. Sheeja, C., & Augusti, K. T. (1995). Indian Journal of Experimental Biology, 33, 608–611.

    Google Scholar 

  34. Singh, S. N., et al. (2001). Journal of Ethnopharmacology, 76, 269–277.

    Article  CAS  Google Scholar 

  35. Prince, P. S. M., & Menon, V. P. (2000). Journal of Ethnopharmacology, 70, 9–15.

    Article  Google Scholar 

  36. Shanmugasundaram, E. R. B., Rajeshwari, G., Baskaran, X., Kumar, B. R. R., Shanmugasundaram, K. R., & Ahmath, B. K. (1990). Journal of Ethnopharmacology, 30, 281–294.

    Article  CAS  Google Scholar 

  37. Achrekar, B., Kakij, G. S., Pote, M. S., & Kelkar, S. M. (1991). In Vivo, 5(2), 143–147.

    CAS  Google Scholar 

  38. Gupta, B. L., et al. (1997). Indian Journal of Experimental Biology, 35, 792–795.

    CAS  Google Scholar 

  39. Cerami, A., Koenig, R. J., Peterson, C. M., & Stevens, V. J. (1978). Progress in clinical and. Biological Research, 21, 33–45.

    CAS  Google Scholar 

  40. Al-Yassin, D. and Ibrahim, K. (1981) A minor haemoglobin fraction and the level of fasting blood glucose. Faculty of Medicine M.S.University of Baroda. 23, 373-380.

  41. Udayakumar, R., Kasthurirengan, S., Mariashibu, T. S., Manoharan, R., Anbazhagan, V. R., Kim, S. C., Ganapathi, A., & Choi, C. W. (2009). International Journal of Molecular Sciences, 10, 2367–2382.

    Article  CAS  Google Scholar 

  42. Daisy, P., & Rajathi, M. (2009). Tropical Journal of Pharmaceutical Research, 8(5), 393–398.

    Article  Google Scholar 

  43. Perkins, J. M., & Davis, S. N. (2007). The rationale for prandial glycemic control in diabetes mellitus. Insulin, 2(2), 52–60.

    Article  Google Scholar 

  44. Valdivielso, P., Puerta, S., Rioja, J., et al. (2010). Clinica Chimica Acta, 411, 433–437.

    Article  CAS  Google Scholar 

  45. Rang, H. P., et al. (2003). Pharmacology (5th ed.). New York: Churchill Livingstone. Chapter 25.

    Google Scholar 

  46. Akhtar, M. A., Rashid, M., Ibne Wahed, M. I., Islam, M. R., Shaheen, S. M., Islam, M. A., Amran, M. S., & Ahmed, M. (2007). Research Journal of Medicine and Medical Sciences, 2(1), 29–34.

    Google Scholar 

  47. Irshad, M., & Chaudhuri, P. S. (2002). Indian Journal of Experimental Biology, 40, 1233–1239.

    CAS  Google Scholar 

  48. Sefi, M., Fetouia, H., Lachkara, N., Tahraouib, A., Lyoussib, B., Boudawarac, T., & Zeghala, N. (2011). Journal of Ethnopharmacology, 135, 243–250.

    Article  Google Scholar 

  49. Gupta, S., Mediratta, P. K., Singh, S., Sharma, K. K., & Shukla, R. (2006). Indian Journal of Experimental Biology, 44, 300–304.

    Google Scholar 

  50. Aebi, H. (1984) Catalase in vitro. In: Methods in enzymology. Vol 105. S.P. Colowick, N. and O. Kaplane eds. New York, Academic Press. 105, pp 121-126.

  51. Feshani, A. M., Kouhsari, S. M., & Mohammadi, S. (2011). Journal of Ethnopharmacology, 133, 67–74.

    Article  CAS  Google Scholar 

  52. Bakırel, T., Bakırel, U., Keles¸, O. U., Gunes¸, S. U., & Yardibi, H. (2008). Journal of Ethnopharmacology, 116, 64–73.

    Article  Google Scholar 

  53. Raghavan, B., & Kumari, S. K. (2006). Indian Journal of Physiology and Pharmacology, 50(2), 133–142.

    CAS  Google Scholar 

  54. Nagalakshmi, G. C. D., Rao, S. S., & Fareeda, G. (2010). The Bioscan, 5(2), 197–200.

    Google Scholar 

  55. Chakrabarti, S., Biswas, T. K., Rokeya, B., Ali, L., Mosihuzzaman, M., Nahar, N., Khan, A. K. A., & Mukherjee, B. (2003). Journal of Ethnopharmacology, 84, 41–46.

    Article  Google Scholar 

  56. Jung, S. H., Yun, J., Shim, E. K., Choi, S. Y., Jin, J. L., & Lee, J. R. (2007). Biochemical Journal, 403, 243–250.

    Article  CAS  Google Scholar 

  57. Anandharajan, R., Jaiganesh, S., Shankernarayanan, N. P., Viswakarma, R. A., & Balakrishnan, A. (2006). Phytomedicine, 13, 434–441.

    Article  CAS  Google Scholar 

  58. Lakshmi, B. S., Sujatha, S., Anand, S., Sangeetha, K. N., Narayanan, R. B., Katiyar, C., et al. (2009). Journal of Diabetes, 1, 99–106.

    Article  CAS  Google Scholar 

  59. Cooke, D. W., & Lane, M. D. (1998). Journal of Biological Chemistry, 273, 6210–6217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are gratefully acknowledged to the Dean, College of Basic Sciences and Humanities, and the Director, Experiment Station, G. B. Pant University of Agriculture and Technology, Pantanagar for providing all necessary help and facilities for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Singh, S.P., Singh, M. et al. Combined Potentiating Action of Phytochemical(s) from Cinnamomum tamala and Aloe vera for their Anti-diabetic and Insulinomimetic Effect Using In Vivo Rat and In Vitro NIH/3T3 Cell Culture System. Appl Biochem Biotechnol 175, 2542–2563 (2015). https://doi.org/10.1007/s12010-014-1448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1448-3

Keywords

Navigation