Skip to main content
Log in

Differential Display of Antioxidants in Mitigating Adverse Effects of UV-B Radiation in Nostoc muscorum and Phormidium foveolarum Photoacclimated to Different Irradiances

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The response of UV-B radiation (UV-BL; 0.5) and (UV-BH; 1.5 μmol m−2 s−1) was investigated in two cyanobacteria—Nostoc muscorum and Phormidium foveolarum—preacclimated to low, normal, and high (LL; 15 ± 0.5, NL; 75 ± 3.5, and HL; 225 ± 5.5 μmol photon m−2 s−1, respectively) light intensities. Acclimation to HL stimulated growth over the control; however, both UV-B doses induced decline in growth of both cyanobacteria. UV-B-induced decline was maximum in LL acclimated cells which was in consonance with the results for chlorophyll content. LL acclimation led to an increase in phycocyanin content. Carotenoids content was maximum in HL acclimated (UV-B untreated and treated) cells of N. muscorum and P. foveolarum. Maximum stimulation in SOR and H2O2 levels was observed under LL + UV-BH treatment which was correlated with inefficient antioxidative mechanism (SOD, CAT, POD, and GST) in these cells. MDA and RCG contents also showed a similar trend. Mitigation of UV-B-induced stress response could be established in HL acclimated cells due to the concerted and differential display of enzymatic and nonenzymatic antioxidants in them. P. foveolarum proved to be more resistant than N. muscorum under the studied test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Car:

Carotenoids

Chl a :

Chlorophyll a

PAR:

Photosynthetically active radiation

PSI:

Photosystem I

PBS:

Phycobilisomes

Phy:

Phycocyanin

References

  1. Gorton, H. L., & Vogelmann, T. C. (2003). Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochemistry and Photobiology, 77(6), 608–615.

  2. Montgomery, B. L. (2007). Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Molecular Microbiology, 64, 16–27.

  3. Björkman, O. (1981). Responses to different quantum flux densities. In Encyclopedia of Plant Physiology, vol. 12A: Physiological plant ecology I (Lange, O.L., Nobel, P.S., Osmond, C.B., & Ziegler, H. eds.) Springer, Berlin Heidelberg New York pp. 57–107.

  4. Fraser, P. J., Bouma, W. J., Forgan, B. W., Lehman, P., & Roy, C. R. (1992). The 1992 Antarctic ozone hole. Clean Air, 26, 132–133.

  5. Shindell, D. T., Rind, D., & Lonergan, P. (1998). Increased polar stratospheric ozone losses and delayed eventual recovery owing to greenhouse-gas concentrations. Nature, 392, 589–592.

  6. Mohammed, A. R., & Tarpley, L. (2011). Morphological and physiological responses of nine southern US rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation. Environmental and Experimental Botany, 70, 174–184.

  7. Lohscheider, J. N., Strittmatter, M., Kupper, H., & Adamska, I. (2011). Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. strains depends on their ability for photoprotection. PLoS ONE, 6(5), e20134. doi:10.1371/journal. pone.0020134.

  8. Baker, K. S., Smith, R. C., & Green, A. E. S. (1980). Middle ultraviolet radiation reaching the ocean surface. Photochemistry and Photobiology, 32, 367–374.

  9. Morris, D. P., Zagarese, H., Williamson, C. E., Balserio, E. G., Hargreaves, B. R., Modenutti, B., Moeller, R., & Queimalinos, C. (1995). The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, 40, 1381–1391.

  10. Kirk, J. T. O. (1994). Optics of UV-B radiation in natural waters. Archives of Hydrobiology, 43, 1–16.

  11. Hurtubise, R. D., & Havel, J. E. (1998). The effects of ultraviolet-B radiation on freshwater invertebrates: experiments with a solar simulator. Limnology and Oceanography, 43, 1082–1088.

  12. Häder, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochemical and Photobiological Sciences, 6, 267–285.

  13. Sheeba, Singh, V. P., Srivastava, P. K., & Prasad, S. M. (2011). Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation. Ecotoxicology and Environmental Safety, 74, 1981–1993.

  14. Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–156.

  15. Wang, S. H., Yang, Z. M., Yanh, H., Lu, Bo, Li, S. Q., & Lu, Y. P. (2004). Copper-induced stress and oxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 45, 203–212.

  16. Thapar, R., Srivastava, A. K., Bhargava, P., Mishra, Y., & Rai, L. C. (2008). Impact of different abiotic stresses on growth, photosynthetic electron transport chain, nutrient uptake and enzyme activities of Cu-acclimated Anabaena doliolum. Journal of Plant Physiology, 165, 306–316.

  17. Christie, J. M., & Jenkins, G. I. (1996). Distinct UV-B and UV-A blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells. Plant Cell, 8, 1555–1567.

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

  19. Porra, R. J., Thompson, W. A., & Kriedemann, P. E. (1989). Determination of accurate extinction four different solvents; verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta - Bioenergetics, 975, 384–394.

  20. Goodwin, T. W. (1954). Carotenoids. In Handbook of Plant Analysis, vol. 3: ((Paech, K., Tracey, M. V. (eds.) Berlin, Springer-Varlag, pp. 272-311.

  21. Blumwald, E., & Tel-Or, E. (1982). Structural aspects of the Nostoc muscorum to salt. Archives of Microbiology, 132, 163–167.

  22. Elstner, E. F., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616–620.

  23. Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant system in acid rain-treated bean plants. Plant Science, 151, 59–66.

  24. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

  25. Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assay for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.

  26. Giannopolitis, C. N., & Reis, S. K. (1977). Superoxide dismutase. I. occurrence in higher plants. Plant Physiology, 59, 309–314.

  27. Aebi. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

  28. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione-S-transferases, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

  29. Gahagen, H. E., Halm, R. E., & Abeles, F. B. (1968). Effect of ethylene on peroxidase activity. Physiologia Plantarum, 21, 1270–1279.

  30. Ellmann, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

  31. Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. The Biochemical Journal, 104, 627–633.

  32. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of the free proline for water stress studies. Plant and Soil, 39, 205–207.

  33. Gerhardt, M., Schneider, S., & Brüggemann, W. (2009). Physiological acclimation to light in Chara intermedia nodes. Aquatic Botany, 91, 151–156.

  34. He, Y. Y., & Häder, D. P. (2002). Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. Journal of Photochemistry and Photobiology B: Biology, 66(1), 73–80.

  35. Prasad, S. M., & Zeeshan, M. (2005). UV-B radiation and cadmium induced changes in growth, photosynthesis, and antioxidant enzymes of cyanobacterium Plectonema boryanum. Biologia Plantarum, 4, 229–236.

  36. Gao, K., Yu, H., & Bron, M. T. (2007). Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology B: Biology, 89, 117–124.

  37. He, Y. Y., & Häder, D. P. (2002). UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cystein. Journal of Photochemistry and Photobiology B: Biology, 66, 115–124.

  38. Lappalainen, N. M., Huttunen, S., Suokanerva, H., & Lakkala, K. (2010). Seasonal acclimation of the moss Polytrichum juniperinum Hedw. to natural and enhanced ultraviolet radiation. Environmental Pollution, 158, 891–900.

  39. Rosenquist, E. (2001). Light acclimation maintains the redox state of the PSII electron acceptor QA within a narrow range over a broad range of light intensities. Photosynthesis Research, 70, 299–310.

  40. Wherley, B. G., Gardner, D. S., & Metzger, J. D. (2005). Tall fescue photomorphogenesis as influenced by changes in the spectral composition and light intensity. Crop Science, 45, 562–568.

  41. Lonneborg, A., Lind, L. K., Kalla, S. R., Gustafsson, P., & Oquist, G. (1985). Acclimation processes in the light-harvesting system of the cyanobacterium Anacystis nidulans following a light shift from white to red. Plant Physiology, 78, 110–114.

  42. Raps, S., Wyman, K., Siegelman, H. W., & Falkowski, P. (1983). Adaptation of the cyanobacterium Microcystis aeruginosa to light intensity. Plant Physiology, 72, 829–832.

  43. Marwood, C. A., & Greenberg, B. M. (1996). Effect of supplementary UV-B radiation on chlorophyll synthesis and accumulation of photosystems during chloroplast development in Spirodela oligorrhiza. Photochemistry and Photobiology, 64, 666–670.

  44. Zuoming, X., Wang, Y., Liu, Y., & Liu, Y. (2009). Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. European Journal of Soil Biology, 45, 377–382.

  45. Li, M., Hu, C. W., Zhu, Q., Chen, L., Kong, Z. M., & Liu, Z. L. (2006). Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere, 62, 565–572.

  46. Rodriguez, F., Chauton, M., Johnsen, G., Andresen, K., Olsen, L. M., & Zapata, M. (2006). Photoacclimatation in phytoplankton: Implications for biomass estimates, pigment functionally and chemotaxonomy. Marine Biology, 148, 963–971.

  47. Pinto, E., Sigaud-Kutner, T. C. S., Leitão, M. A. S., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. Journal of Phycology, 39, 1008–1018.

  48. Latifi, A., Ruiz, M., & Zhang, C. C. (2009). Oxidative stress in cyanobacteria. FEMS Microbiology Review, 33, 258–278.

  49. Campos, J. L., Figueras, X., Piñol, M. T., Boronat, A., & Tiburcio, A. F. (1991). Carotenoid and conjugated polyamine levels as indicators of ultraviolet-C induced stress in Arabidopsis thaliana. Photochemistry and Photobiology, 53, 689–693.

  50. Sah, J. F., Kolli, B. K., Srivastava, M., & Mohanty, M. (1998). Effects of ultraviolet-B radiation on phycobilisomes of Synechococcus PCC 7942: alterations in conformation and energy transfer characteristics. Biochemistry and Molecular Biology International, 44, 245–247.

  51. Arora, A., Sairam, R. K., & Srivastava, G. C. (2002). Oxidative stress and antioxidative sytem in plants. Current Science, 82, 1227–1238.

  52. Tuteja, N., Singh, M. B., Misra, M. K., Bhalla, P. L., & Tuteja, R. (2001). Molecular mechanisms of DNA damage and repair: progress in plants. Critical Reviews in Biochemistry and Molecular Biology, 36, 337–397.

  53. Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40.

  54. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

  55. Singh, S. P., Häder, D. P., & Sinha, R. P. (2010). Cyanobacteria and ultraviolet radiation (UVR) stress: Mitigation strategies. Ageing Research Reviews, 9, 79–90.

  56. Vranova, E., Inze, D., & Breusegem, F. V. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53, 1227–1236.

  57. Karpinsky, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G., & Mullineaux, P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science, 284, 654–657.

  58. Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2006). A new paradigm for the action of oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta, 1757, 742–749.

  59. Wang, S. H. (2005). Different responses to Cu stress of different Brassica juncea L. sp. Journal of Biology, 22, 30–32.

  60. Ali, M. B., Eun-Joo, H., & Kee-Yoeup, P. (2005). Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environmental and Experimental Botany, 54, 109–120.

  61. Guidi, L., Degl’Innocenti, E., Remorini, D., Biricolti, S., Fini, A., Ferrini, F., Nicese, F. P., & Tattini, M. (2011). The impact of UV-radiation on the physiology and biochemistry of Ligustrum vulgare exposed to different visible-light irradiance. Environmental and Experimental Botany, 70, 88–95.

  62. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiologia Plantarum, 100, 241–254.

  63. Mittler, R., & Tel-Or, E. (1991). Oxidative stress responses and shock proteins in unicellular cyanobacteria Synechococcus R2 (PCC-7942). Archives of Microbiology, 155, 125–130.

  64. Halliwell, B., & Gutteridge, J. M. C. (1989). Free Radicals in Biology and Medicine (2nd ed., pp. 96–98). Oxford: Clarendon Press.

    Google Scholar 

  65. Mittler, R., Vanderauwera, S., Gollery, M., & Van, B. F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 1360–1385.

  66. Lozano, R., Azcon, R., & Palma, J. M. (1996). SOD and drought stress in Lactua sativa. New Phytologist, 136, 329–331.

  67. Mishra, V., Srivastava, G., & Prasad, S. M. (2009). Antioxidant response of bitter gourd (Momordica charantia L.) seedlings to interactive effect of dimethoate and UV-B irradiation. Scientia Horticulturae, 120, 373–378.

  68. Dixon, D. P., Davis, B. G., & Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. Journal of Biological Chemistry, 277, 30859–30869.

  69. Dixon, D., Cummins, I., Cole, D. J., & Edwards, R. (1998). Glutathione-mediated detoxification systems in plants. Current Opinion in Plant Biology, 1, 258–266.

  70. Gao, Y., Xiang, W., Li, X. B., Gao, C. F., Zhang, Y. L., Li, H., & Wu, Q. Y. (2009). Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. Journal of Experimental Botany, 60, 1141–1154.

  71. Gaspar, T., Penel, C., Hagege, D., & Greppin, H. (1991). Peroxidase in plant growth, differentiation and development processes. In: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases (Laborzewsky, J., Greppin, H., Penel, C. & Gaspar, T. eds.) University M Curie, Sklodowska, pp. 249-280.

  72. Kawasaki, L., & Aguirre, J. (2001). Multiple catalase gene are differentially regulated in Aspergillus nidulans. Journal of Bacteriology, 183, 1434–1440.

  73. Feieraband, J., & Engel, S. (1986). Photoinactivation of catalase in vitro and in leaves. Archives of Biochemistry and Biophysics, 251, 567–576.

  74. Hertwig, B., Streb, P., & Feierabend, J. (1992). Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiology, 100, 1547–1553.

  75. Streb, P., Michael-Knauf, A., & Feierabend, J. (1993). Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Physiologia Plantarum, 88, 590–598.

  76. Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., & Inaba, K. (2003). Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. Journal of Experimental Medicine, 198, 235–247.

  77. Rouhier, N., Lemaire, S. D., & Jacquot, J. P. (2008). The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionulation. Annual Review of Plant Biology, 59, 143–166.

  78. Zeng, X. W., Ma, L. Q., Qiu, R. L., & Tang, Y. T. (2011). Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany, 70, 227–232.

  79. Hancock, J., Desikan, R., Harrison, J., Bright, J., Hooley, R., & Neill, S. (2006). Doing the unexpected: proteins involved in hydrogen peroxide perception. Journal of Experimental Botany, 57, 1711–1718.

  80. Fatma, T., Khan, M. A., & Choudhary, M. (2007). Impact of environmental pollution on cyanobacterial proline content. Journal of Applied Phycology, 19, 625–629.

  81. Joyce, P. A., Aspinall, D., & Paleg, L. G. (1992). Photosynthesis and the accumulation of proline in response to water deficit. Australian Journal of Plant Physiology, 19, 249–261.

  82. Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Iblas, J. I., Damez, B., Narasimha, M. L., Hasegawa, P. M., Joly, R. J., & Bressan, R. A. (2002). Does proline accumulations play an active role in stress induced growth reduction? Plant Journal, 31, 699–712.

  83. Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. Plant Journal, 4, 215–223.

  84. Matysik, J., Alia, Bhalu, B., & Mohanty, P. (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82, 525–532.

Download references

Acknowledgments

The authors are thankful to The Head, Department of Botany, University of Allahabad, Allahabad for providing necessary laboratory facilities. The authors are also thankful to the University Grants Commission, New Delhi for providing financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheo Mohan Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, G., Prasad, S.M. Differential Display of Antioxidants in Mitigating Adverse Effects of UV-B Radiation in Nostoc muscorum and Phormidium foveolarum Photoacclimated to Different Irradiances. Appl Biochem Biotechnol 175, 2703–2728 (2015). https://doi.org/10.1007/s12010-014-1446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1446-5

Keywords

Navigation