Skip to main content

Advertisement

Log in

Non-Invasive Delivery of dsGST Is Lethal to the Sweet Potato Whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The sweet potato whitefly, Bemisia tabaci (G.) biotype B (Hemiptera: Aleyrodidae), is one of the most economically important pest, by being a dreaded vector of Geminiviruses, and also causes direct damage to the crops by sucking phloem sap. Glutathione S-transferase (GST) is a large family of multifunctional enzymes that play pivotal roles in the detoxification of secondary allelochemical produced by the host plants and in insecticide resistance, thus regulates insect growth and development. The objective of this study is to show the potential of RNA interference (RNAi) in the management of B. tabaci. RNAi is a sequence-specific gene silencing mechanism induced by double-stranded RNA (dsRNA) which holds tremendous potential in pest management. In this regard, we sequenced the GST from B. tabaci and synthesized approximately 500-bp dsRNA from the above and delivered through diet to B. tabaci. Real-time quantitative PCR (RT-qPCR) showed that continuous application of dsGST at 1.0, 0.5, and 0.25 μg/μl reduced mRNA expression levels for BtGST by 77.43, 64.86, and 52.95 % which resulted in mortality by 77, 59, and 40 %, respectively, after 72 h of application. Disruption of BtGST expression will enable the development of novel strategies in pest management and functional analysis of vital genes in B. tabaci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Byrne, D. N., & Bellows, T. S. (1991). Whitefly biology. Annual Review of Entomology, 36, 431–457.

    Article  Google Scholar 

  2. Jones, D. R. (2003). Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 109, 195–219.

    Article  Google Scholar 

  3. Brown, J. K., & Czosnek, H. (2002). Whitefly transmission of plant viruses. In R. T. Plumb (Ed.), Advances in botanical research (Plant virus vector interactions, Vol. 36, pp. 65–100). New York: Academic.

    Google Scholar 

  4. Horowitz, A. R., Kontsedalov, S., Denholm, I., & Ishaaya, I. (2002). Dynamics of insecticide resistance in Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pest Management Science, 58, 100–112.

    Article  Google Scholar 

  5. Foster, S. P., Devine, G., & Devonshire, A. L. (2007). Insecticide resistance. In H. F. van Emden & R. Harrington (Eds.), Aphids as crop pests (pp. 261–285). UK: CABI.

    Chapter  Google Scholar 

  6. Caplen, N. J., Fleenor, J., Fire, A., & Morgan, R. A. (2000). DsRNA-mediated gene silencing in culture Drosophila Cells: a tissue culture model for analysis of RNA interference. Gene, 252, 95–105.

    Article  CAS  Google Scholar 

  7. Price, D. R., & Gatehouse, J. A. (2008). RNAi-mediated crop protection against insects. Trends in Biotechnology, 26, 393–400.

    Article  CAS  Google Scholar 

  8. Mao, Y. B., Tao, X. Y., Xue, X. Y., Wang, L. J., & Chen, X. Y. (2011). Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 20, 665–673.

    Article  CAS  Google Scholar 

  9. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  CAS  Google Scholar 

  10. Christiaens, O., Swevers, L, & Smagghe, G. (2014). DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection. Peptides, 53, 307–314.

  11. Ghanim, M., Kontsedalov, S., & Czosnek, H. (2007). Tissue-specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochemistry and Molecular Biology, 37, 732–738.

    Article  CAS  Google Scholar 

  12. Huvenne, H., & Smagghe, G. (2010). Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a Review. Journal of Insect Physiology, 56, 227–235.

    Article  CAS  Google Scholar 

  13. Walshe, D. P., Lehane, S. M., Lehane, M. J., & Haines, L. R. (2009). Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Molecular Biology, 18, 11–19.

    Article  CAS  Google Scholar 

  14. Konopova, B., & Jindra, M. (2007). Juvenile hormone resistance gene methoprene-tolerant controls entry into metamorphosis in the beetle, Tribolium catstaneum. Proceedings of the National Academy of Science, 104, 10488–10493.

    Article  CAS  Google Scholar 

  15. Shakesby, A. J., Wallace, I. S., Isaacs, H. V., Pritchard, J., Roberts, D. M., et al. (2009). A water-specific aquaporin involved in aphid osmoregulation. Insect Biochemistry and Molecular Biology, 39, 1–10.

    Article  CAS  Google Scholar 

  16. Zhou, X., Wheeler, M. M., Oi, F. M., & Scharf, M. E. (2008). RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochemistry and Molecular Biology, 38, 805–815.

    Article  CAS  Google Scholar 

  17. Zhou, Y. L., Zhu, X. Q., Gu, S. H., Cui, H. H., Guo, Y. Y., Zhou, J. J., & Zhang, Y. J. (2014). Silencing in Apolygus lucorum of the olfactory coreceptor Orco gene by RNA interference induces EAG response declining to two putative semiochemicals. Journal of Insect Physiology, 60, 31–39.

    Article  CAS  Google Scholar 

  18. Sharp, P. J., Smith, D. R., Bach, W., Wagland, B. M., & Cobon, G. S. (1991). Purified glutathione S-transferases from parasites as candidate protective antigens. International Journal for Parasitology, 21, 839–846.

    Article  CAS  Google Scholar 

  19. Yang, N., Xie, W., Yang, X., Wang, S., Wu, Q., et al. (2013). Transcriptomic and proteomic responses of sweet potato whitefly, Bemisia tabaci, to thiamethoxam. PLoS ONE, 8(5), e61820. doi:10.1371/journal.pone.0061820.

    Article  CAS  Google Scholar 

  20. Sambrook, J., & Russell, D.W. (2001). Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

  21. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  22. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  23. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    Article  CAS  Google Scholar 

  24. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27, 1164–1165.

    Article  CAS  Google Scholar 

  25. Stamatakis, A. (2008). The RAxML 7.0.4 manual. http://icwww.epfl.ch/~stamatak/index-Dateien/countManual7.0.4.php. Accessed 12 Sept 2014.

  26. Naito, Y., Tamuda, T., Mastumiya, T., Kumoko, U. T., Saigo, K., & Morihita, S. (2005). dsChech: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Research, 33, 589–591.

    Article  Google Scholar 

  27. Blackburn, M. B., Domek, J. M., Gelman, D. B., & Hu, J. S. (2005). The broadly insecticidal Photorhabdus luminescens toxin complex a (TCA): activity against the Colorado potato beetle and sweet potato whitefly. Journal of Insect Science, 5, 32.

    Article  Google Scholar 

  28. Febvay, G., Delobel, B., & Rahbe, Y. (1988). Influence of the amino-acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera, Aphididae). Canadian Journal of Zoology, 66, 2449–2453.

    Article  CAS  Google Scholar 

  29. Upadhyay, S. K., Chandrashekar, K., Thakur, N., Singh, P. K., Tuli, R., et al. (2011). RNA interference for the control of whiteflies (Bemisia tabaci) by oral route. Journal of Biological Sciences, 36, 153–161.

    CAS  Google Scholar 

  30. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., & Kubista, M. (2009). The MIQE guidelines—minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  Google Scholar 

  31. Livak, K. J., & Schmittgen, T. D. (2001). Real-time quantitative PCR. Methods, 25, 383–385.

    Article  Google Scholar 

  32. Krogh, A., Larsson, B., Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    Article  CAS  Google Scholar 

  33. Salinas, A. E., & Wong, M. G. (1999). Glutathione S-transferases—a review. Current Medicinal Chemistry, 6(4), 279–309.

    CAS  Google Scholar 

  34. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  35. Enayati, A. A., Ranson, H., & Hemingway, J. (2005). Insect glutathione transferases and insecticide resistance. Insect Molecular Biology, 14(1), 3–8. doi:10.1111/j.1365-2583.2004.00529.x.

    Article  CAS  Google Scholar 

  36. Vontas, J. G., Small, G. J., & Hemingway, J. (2001). Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemistry Journal, 357, 65–72.

    Article  CAS  Google Scholar 

  37. Sawicki, R., Singh, S. P., Mondal, A. K., Benes, H., & Zimniak, P. (2003). Cloning, expression and biochemical characterization of one Epsilon class (GST-3) and ten Delta class (GST-1) Glutathione-S-Transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochemistry Journal, 370, 661–669.

    Article  CAS  Google Scholar 

  38. Morel, F., Rauch, C., Petit, E., Piton, A. L., Theret, N., Coles, B., & Guillouzo, A. (2004). Gene and protein characterization of the human glutathione S-transferase kappa and evidence for a peroxisomal localization. The Journal of Biological Chemistry, 279, 16246–16253.

    Article  CAS  Google Scholar 

  39. Lander, J. E., Parsons, J. F., Rife, C. L., Gilliand, G. L., & Armstrong, R. N. (2004). Parallel evolutionary pathways for glutathione transferases: structure and mechanisms of the mitochondrial class Kappa enzyme rGSTK1-1. Biochemistry, 43, 252–261.

    Google Scholar 

  40. Board, P. G., Baker, R. T., Chelvanayagam, G., & Jermiin, L. S. (1997). Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochemical Journal, 328, 929–935.

    CAS  Google Scholar 

  41. Board, P. G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L. S., et al. (2000). Identification, characterization, and crystal structure of the Omega class glutathione transferases. Journal of Biological Chemistry, 275(32), 24798–24806. doi:10.1074/jbc.m001706200.

    Article  CAS  Google Scholar 

  42. Ranson, H., Claudianos, C., Ortelli, F., Abgrall, C., Hemingway, J., Sharakhova, M. V., Unger, M. F., Collins, F. H., & Feyereisen, R. (2002). Evolution of supergene families associated with insecticide resistance. Science, 298, 179–181.

    Article  CAS  Google Scholar 

  43. Enayati, A., Asgarian, A. A., Sharif, M., Boujhmehrani, H., Amouei, A., Vahedi, N., Boudaghi, B., Piazak, N., & Hemingway, J. (2009). Propetamphos resistance in Rhipicephalus bursa (Acari, Ixodidae). Veterinary Parasitology, 162, 135–141.

    Article  CAS  Google Scholar 

  44. Enayati, A., & Hemingway, J. (2010). Malaria management: past, present, and future. Annual Review of Entomology, 55, 569–591. doi:10.1146/annurev-ento-112408-085423.

    Article  CAS  Google Scholar 

  45. Molin, E. U., & Mattsson, J. G. (2008). Effect of acaricides on the activity of glutathione transferases from the parasitic mite Sarcoptes scabiei. Parasitology, 135, 115–123.

    Article  CAS  Google Scholar 

  46. Turner, C. T., Davy, M. W., MacDiarmid, R. M., Plummer, K. M., Birch, N. P., & Newcomb, R. D. (2006). RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Molecular Biology, 15, 383–391.

    Article  CAS  Google Scholar 

  47. Mao, Y. B., Cai, W. J., Wang, J. W., Hong, G. J., Tao, X. Y., et al. (2007). Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.

    Article  CAS  Google Scholar 

  48. Bautista, M. A., Anita, M., Miyata, T., Miura, K., & Tanaka, T. (2009). RNA interference mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology, 39, 38–46.

    Article  CAS  Google Scholar 

  49. Ren, X. L., Chen, R. R., Zhang, Y., Ma, Y., Cui, J. J., et al. (2013). A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement to Cry1Ca and Cry1Ac toxicity. Applied and Environmental Microbiology, 79, 5576–5583.

    Article  CAS  Google Scholar 

  50. Li, J., Chen, Q. H., Lin, Y. J., Jiang, T. R., Wu, G., et al. (2011). RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Management Science, 67, 852–859.

    Article  CAS  Google Scholar 

  51. Singh, A. D., Wong, S., Ryan, C. P., & Whyard, S. (2013). Oral delivery of double stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. Journal of Insect Science, 13, 69.

    Article  CAS  Google Scholar 

  52. Zhang, X., Zhang, J., & Zhu, K. Y. (2010). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683–693.

    Article  Google Scholar 

  53. Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., et al. (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 40, 58–63.

    Article  CAS  Google Scholar 

  54. Meyering-Vos, M., & Muller, A. (2007). RNA interference suggests sulfakinins as satiety effectors in the cricket Gryllus bimaculatus. Journal of Insect Physiology, 53, 840–848.

    Article  CAS  Google Scholar 

  55. Maori, E., Paldi, N., Shafir, S., Kalev, H., Tsur, E., et al. (2009). IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Molecular Biology, 18, 55–60.

    Article  CAS  Google Scholar 

  56. Chen, J., Zhang, D., Yao, Q., Zhang, J., Dong, X., et al. (2010). Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown plant hopper, Nilaparvata lugens. Insect Molecular Biology, 19, 777–786.

    Article  CAS  Google Scholar 

  57. Li, X., Zhang, M., & Zhang, H. (2011). RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PloS One, 6, e17788.

    Article  CAS  Google Scholar 

  58. Zha, W., Peng, X., Chen, R., Du, B., Zhu, L., et al. (2011). Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE, 6, e20504.

    Article  CAS  Google Scholar 

  59. Zhang, Y., Li, S., Wang, L., Zi, J., He, P., et al. (2013). Over expression of carboxylesterase-1 and mutation (F439H) of acetylcholinesterase-1 are associated with chlorpyrifos resistance in Laodelphax striatellus. Pesticide Biochemistry and Physiology, 106, 8–13.

    Article  CAS  Google Scholar 

  60. Sun, X. Q., Zhang, M. X., Yu, J. Y., Jin, Y., Ling, B., et al. (2013). Glutathione S-Transferase of brown plant hoppers (Nilaparvata lugens) is essential for their adaptation to gramine-containing host plants. PloS One, 8, e64026.

    Article  CAS  Google Scholar 

  61. He, P., Zhang, J., Liu, N. Y., Zhang, Y. N., Yang, K., et al. (2011). Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens Stal. PloS One, 6, e28921.

    Article  CAS  Google Scholar 

  62. Lu, D. H., Wu, M., Pu, J., Zhang, Q., & Han, Z. J. (2013). A functional study of two dsRNA binding protein genes in Laodelphax striatellus. Pest Management Science, 69, 1034–1039.

    Article  CAS  Google Scholar 

  63. Whyard, S., Singh, A. D., & Wong, S. (2009). Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.

    Article  CAS  Google Scholar 

  64. Araujo, R., Santos, A., Pinto, F., Gontijo, N., Lehane, M., et al. (2006). RNA interference of the salivary gland nitrophorin 2 in the triatomine bug, Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochemistry and Molecular Biology, 36, 683–693.

    Article  CAS  Google Scholar 

  65. Yao, J., Rotenberg, D., Afsharifar, A., Barandoc-Alviar, K., & Whitfield, A. E. (2013). Development of RNAi methods for Peregrinus maidis, the corn plant hopper. PLoS ONE, 8, e70243.

    Article  CAS  Google Scholar 

  66. Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., et al. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

    Article  CAS  Google Scholar 

  67. Zhu, F., Xu, J., Palli, R., Ferguson, J., & Palli, S. R. (2011). Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Management Science, 67, 175–182.

    Article  CAS  Google Scholar 

  68. Wan, P. J., Lu, D., Guo, W. C., Ahmat, T., Yang, L., et al. (2013). Molecular cloning and characterization of a putative proline dehydrogenase gene in the Colorado potato beetle, Leptinotarsa decemlineata (Say). Insect Science. doi:10.1111/1744- 7917.12034.

    Google Scholar 

  69. Zhou, L. T., Jia, S., Wan, P. J., Kong, Y., Guo, W. C., et al. (2013). RNA interference ofa putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). Journal of Insect Physiology, 59, 1049–1056.

    Article  CAS  Google Scholar 

  70. Blandin, S., Moita, L. F., Kocher, T., Wilm, M., Kafatos, F. C., & Levashina, E. A. (2002). Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Reports, 3, 852–856.

    Article  CAS  Google Scholar 

  71. Pitino, M., Coleman, A. D., Maffei, M. E., Ridout, C. J., & Hogenhout, S. A. (2011). Silencing of aphid genes by dsRNA feeding from plants. PloS One, 6, e25709.

    Article  CAS  Google Scholar 

  72. Wan, P. J., Jia, S., Li, N., Fan, J. M., & Li, G. Q. (2014). RNA interference depletion of the Halloween gene disembodied implies its potential application for management of plant hopper Sogatella furcifera and Laodelphax striatellus. PLoS ONE, 9(1), e86675. doi:10.1371/journal.pone.0086675.

    Article  Google Scholar 

  73. Liu, S., Ding, Z., Zhang, C., Yang, B., & Liu, Z. (2010). Gene knockdown by introthoracic injection of double-stranded RNA in the brown plant hopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 40, 666–671.

    Article  CAS  Google Scholar 

  74. Campbell, E. M., Budge, G. E., & Bowman, A. S. (2010). Gene-knockdown in the honey bee mite, Varroa destructor by a non-invasive approach: studies on a glutathione S-transferase. Parasites & Vectors, 3, 73–83.

    Article  Google Scholar 

  75. Garbutt, J. S., Belles, X., Richards, E. H., & Reynolds, S. E. (2012). Persistence of double stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. Journal of Insect Physiology. doi:10.1016/j.jinsphys.2012.05.013.

    Google Scholar 

  76. Belles, X. (2010). Beyond drosophila: RNAi in vitro and functional genomics in insects. Annual Review of Entomology, 55, 111–128.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank ICAR, New Delhi, for funding the project on 12th Plan Out Reach Program on Sucking Pests (ORP-SP). This work was supported by the Out Reach Program on Sucking Pests (ORP-SP) of Indian Council for Agricultural Research (ICAR), India. Our sincere thanks are due to the Director, IIHR, Bangalore, for encouragement and the necessary facilities. Finally, we are very grateful to Dr. V. V. Ramamurthy (Indian Agricultural Research Institute (IARI), New Delhi) for his continuous support and suggestions over the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Asokan or K. B. Rebijith.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

SignalP prediction for peptide motif of sigma class GST sequences from Bemisia tabaci. No signal peptide motif was identified, which was evident from the absence of cleavage site. (GIF 178 kb)

High Resolution (TIFF 92 kb)

Supplementary Table 1

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asokan, R., Rebijith, K.B., Roopa, H.K. et al. Non-Invasive Delivery of dsGST Is Lethal to the Sweet Potato Whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae). Appl Biochem Biotechnol 175, 2288–2299 (2015). https://doi.org/10.1007/s12010-014-1437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1437-6

Keywords

Navigation