Skip to main content

Advertisement

Log in

Identification of Candida tropicalis BH-6 and Synergistic Effect with Pantoea agglomerans BH-18 on Hydrogen Production in Marine Culture

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A marine yeast was isolated from mangrove sludge and named Candida tropicalis BH-6. The optimum temperature and the initial pH value for growth of the isolated strain were 37 °C and 5.0, respectively. The strain had high salt tolerance and could survive at NaCl concentrations of 0–6 %. Additionally, the yield of hydrogen production by C. tropicalis BH-6 was only 66.30 ml/l. However, when the yeast was mixed with Pantoea agglomerans BH-18, hydrogen production increased significantly to a maximum of 1707.5 ml/l, which was 36.94 and 247.54 % higher than the monoculture of P. agglomerans BH-18 and C. tropicalis BH-6, respectively. Taken together, these results revealed that in mixed culture, the yeast strain isolated from the same ecosystem as P. agglomerans BH-18 likely consumed the organic acids produced by fermentation, thus eliminating the factor inhibiting hydrogen production by P. agglomerans BH-18. As a result, the yield of hydrogen production during mixed culture increased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hallenbeck, P. C., & Benemann, J. R. (2002). International Journal of Hydrogen Energy, 27, 1185–1193.

    Article  CAS  Google Scholar 

  2. Levin, D. B., Pitt, L., & Love, M. (2004). International Journal of Hydrogen Energy, 29, 173–185.

    Article  CAS  Google Scholar 

  3. Meher Kotay, S., & Das, D. (2008). International Journal of Hydrogen Energy, 33, 258–263.

    Article  CAS  Google Scholar 

  4. Das, D., & Veziroglu, T. N. (2008). International Journal of Hydrogen Energy, 33, 6046–6057.

    Article  CAS  Google Scholar 

  5. Ni, M., Leung, D. Y. C., Leung, M. K. H., & Sumathy, K. (2006). Fuel Processing Technology, 87, 461–472.

    Article  CAS  Google Scholar 

  6. Kapdan, I. K., & Kargi, F. (2006). Enzyme and Microbial Technology, 38, 569–582.

    Article  CAS  Google Scholar 

  7. Chong, M. L., Sabaratnam, V., Shirai, Y., & Hassan, M. A. (2009). International Journal of Hydrogen Energy, 34, 3277–3287.

    Article  CAS  Google Scholar 

  8. Lu, W., Wen, J., Chen, Y., Sun, B., Jia, X., Liu, M., & Caiyin, Q. (2007). International Journal of Hydrogen Energy, 32, 1059–1066.

    Article  CAS  Google Scholar 

  9. Wang, A., Ren, N., Shi, Y., & Lee, D. J. (2008). International Journal of Hydrogen Energy, 33, 912–917.

    Article  CAS  Google Scholar 

  10. Ding, J., Liu, B. F., Ren, N. Q., Xing, D. F., Guo, W. Q., Xu, J. F., & Xie, G. J. (2009). International Journal of Hydrogen Energy, 34, 3647–3652.

    Article  CAS  Google Scholar 

  11. Venkata Mohan, S., Lalit Babu, V., & Sarma, P. (2008). Bioresource Technology, 99, 59–67.

    Article  CAS  Google Scholar 

  12. Zhu, H., Parker, W., Basnar, R., Proracki, A., Falletta, P., Béland, M., & Seto, P. (2008). International Journal of Hydrogen Energy, 33, 3651–3659.

    Article  CAS  Google Scholar 

  13. Dong, L., Zhenhong, Y., Yongming, S., Xiaoying, K., & Yu, Z. (2009). International Journal of Hydrogen Energy, 34, 812–820.

    Article  Google Scholar 

  14. Xiu-qiang, X. (2007). China Water & Wastewater, 23(10), 5–8.

    Google Scholar 

  15. Zhu, D., Wang, G., Qiao, H., & Cai, J. (2008). International Journal of Hydrogen Energy, 33, 6116–6123.

    Article  CAS  Google Scholar 

  16. Gutell, R. R., & Fox, G. E. (1988). Nucleic Acids Research, 16, r175–r269.

    Article  CAS  Google Scholar 

  17. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  18. Hawkes, F., Dinsdale, R., Hawkes, D., & Hussy, I. (2002). International Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support by the Tianjin Natural Science Foundation for Youths (No. 12JCQNJC04300 and No. 12JCQNJC04200), the Key Program of Tianjin Natural Science Foundation (No. 12JCZDJC22200), the Excellent Young Teachers Program of Tianjin (2014), the Doctoral Program Foundation of Higher education of China (20121208110001),  the National Natural Science Foundation of China (No. 40906074) 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangce Wang.

Additional information

Daling Zhu and Yingchao Ma contributed equally to this study and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Ma, Y., Wang, G. et al. Identification of Candida tropicalis BH-6 and Synergistic Effect with Pantoea agglomerans BH-18 on Hydrogen Production in Marine Culture. Appl Biochem Biotechnol 175, 2677–2688 (2015). https://doi.org/10.1007/s12010-014-1436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1436-7

Keywords

Navigation