Applied Biochemistry and Biotechnology

, Volume 175, Issue 4, pp 1858–1867 | Cite as

Excision of Unstable Artificial Gene-Specific Inverted Repeats Mediates Scar-Free Gene Deletions in Escherichia coli

  • Crystal Jing Ying Tear
  • Chanyuen Lim
  • Hua ZhaoEmail author


Inverted repeat and palindromic sequences have the propensity to form non-beta cruciform structures during DNA replication, leading to perturbations within the genome or plasmid replicon. In this study, the tolerance of the Escherichia coli genome to inverted repeat sequences from 25 to 1200 bp was investigated. Genomic inverted repeats were readily created via the homologous insertion of an overlap extension PCR product containing a gene-specific region of the genome together with thyA coding sequence, creating inverted repeat sequences of various lengths flanking the thyA selection marker in the resulting genome. Inverted repeat sequences below 100 bp were stably propagated, while those above and up to 1200 bp were found to be transiently unstable under auxotrophic thymine selection. Excision efficiency improves with increases of the inverted repeat until 600–800 bp, indicating that the genomic stability of inverted repeat sequences is due to secondary structure formation. Its effectiveness of creating precise and scar-free gene deletions was further demonstrated by deleting a number of genes in E. coli. The procedure can be readily adapted for sequence integration and point mutations in E. coli genome. It also has the potential for applications on other bacteria for efficient gene deletions.


Inverted repeats Size dependent Scar-free gene deletion E. coli 



We thank the group members of Industrial Biotechnology, Institute of Chemical & Engineering Sciences, for their insights and discussion. This work was funded by A*STAR in Singapore ICES/12-574A01. We thank the reviewer for the comments and constructive criticisms.

Supplementary material

12010_2014_1402_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)


  1. 1.
    Butler, D. K., Gillespie, D., & Steele, B. (2002). Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae. Genetics, 161, 1065–1075.Google Scholar
  2. 2.
    Cromie, G. A., Millar, C. B., Schmidt, K. H., & Leach, D. R. (2000). Palindromes as substrates for multiple pathways of recombination in Escherichia coli. Genetics, 154, 513–522.Google Scholar
  3. 3.
    Bikard, D., Loot, C., Baharoglu, Z., & Mazel, D. (2010). Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev, 74, 570–588.CrossRefGoogle Scholar
  4. 4.
    Lobachev, K. S., Rattray, A., & Narayanan, V. (2007). Hairpin-and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front Biosci, 12, 4208–4220.CrossRefGoogle Scholar
  5. 5.
    Darmon, E., Eykelenboom, J. K., Lincker, F., Jones, L. H., White, M., Okely, E., Blackwood, J. K., & Leach, D. R. (2010). E. coli SbcCD and RecA control chromosomal rearrangement induced by an interrupted palindrome. Mol Cell, 39, 59––70.CrossRefGoogle Scholar
  6. 6.
    Lobachev, K. S., Shor, B. M., Tran, H. T., Taylor, W., Keen, J. D., Resnick, M. A., & Gordenin, D. A. (1998). Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics, 148, 1507–1524.Google Scholar
  7. 7.
    Tran, H. T., Degtyareva, N. P., Koloteva, N. N., Sugino, A., Masumoto, H., Gordenin, D. A., & Resnick, M. A. (1995). Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol Cell Biol, 15, 5607–5617.Google Scholar
  8. 8.
    Sinden, R. R., Zheng, G. X., Brankamp, R. G., & Allen, K. N. (1991). On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics, 129, 991–1005.Google Scholar
  9. 9.
    Zhang, Y., Saini, N., Sheng, Z., Lobachev, K.S. (2013). Genome-wide screen reveals replication pathway for quasi-palindrome fragility dependent on homologous recombination. PLoS Genet. 9. e1003979.Google Scholar
  10. 10.
    Tsukamoto, Y., Kato, J. I., & Ikeda, H. (1996). Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics, 142, 383–391.Google Scholar
  11. 11.
    Leach, D. R., Okely, E. A., & Pinder, D. J. (1997). Repair by recombination of DNA containing a palindromic sequence. Mol Microbiol, 26, 597–606.CrossRefGoogle Scholar
  12. 12.
    Lim, C., A.L., Luhe, C.T., Jing Ying, Balagurunathan, B., Wu, J. and Zhao, H et al. (2013). Size of gene specific inverted repeat - dependent gene deletion in Saccharomyces cerevisiae. PLoS ONE. 8. e72137.Google Scholar
  13. 13.
    Nair, N.U. and Zhao, H. (2009). Mutagenic inverted repeat assisted genome engineering (MIRAGE). Nucleic Acids Res. 37. e9.Google Scholar
  14. 14.
    Leach, D. R., & Stahl, F. W. (1983). Viability of lambda phages carrying a perfect palindrome in the absence of recombination nucleases. Nature, 305, 448–451.CrossRefGoogle Scholar
  15. 15.
    Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA, 97, 6640–6645.CrossRefGoogle Scholar
  16. 16.
    Werner, J., & Misra, R. (2005). YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Molecular Microbiology, 57, 1450–1459.CrossRefGoogle Scholar
  17. 17.
    Stringer, A.M., Singh, N., Yermakova, A., Petrone, B.L. and Amarasinghe, J.J. et al. (2012). FRUIT, a scar-free system for targeted chromosomal mutagenesis, epitope tagging, and promoter replacement in Escherichia coli and Salmonella enterica. PLoS ONE. 7. e44841Google Scholar
  18. 18.
    White, M. A., Eykelenboom, J. K., Lopez-Vernaza, M. A., Wilson, E., & Leach, D. R. (2008). Non-random segregation of sister chromosomes in Escherichia coli. Nature, 455, 1248–1250.CrossRefGoogle Scholar
  19. 19.
    Pinder, D. J., Blake, C. E., Lindsey, J. C., & Leach, D. R. (1998). Replication strand preference for deletions associated with DNA palindromes. Mol Microbiol, 28, 719–727.CrossRefGoogle Scholar
  20. 20.
    Sinden, R. R., HashemI, V. I., & Rosche, W. A. (1999). DNA-directed mutations. Leading and lagging strand specificity. Ann N Y Acad Sci, 870, 173–189.CrossRefGoogle Scholar
  21. 21.
    Shurvinton, C. E., Stahl, M. M., & Stahl, F. W. (1987). Large palindromes in the lambda phage genome are preserved in a rec + host by inhibiting lambda DNA replication. Proc Natl Acad Sci USA, 84, 1624–1628.CrossRefGoogle Scholar
  22. 22.
    Leach, D. R. (1994). Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. Bioessays, 16, 893–900.CrossRefGoogle Scholar
  23. 23.
    Peters, J. E., Thate, T. E., & Craig, N. L. (2003). Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol, 185, 2017–2021.CrossRefGoogle Scholar
  24. 24.
    Kulkarni, S. K., & Stahl, F. W. (1989). Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda. Genetics, 123, 249–253.Google Scholar
  25. 25.
    Marsić, N., Roje, S., Stojiljković, I., Salaj-Smic, E., & Trgovcević, Z. (1993). In vivo studies on the interaction of RecBCD enzyme and lambda Gam protein. J Bacteriol, 175, 4738–4743.Google Scholar
  26. 26.
    Link, A. J., Phillips, D., & Church, G. M. (1997). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol, 179, 6228––6237.Google Scholar
  27. 27.
    Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P., & Kushner, S. R. (1989). New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol, 171, 4617–4622.Google Scholar
  28. 28.
    Yu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copel, N. G., & Court, D. L. (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA, 97, 5978–5983.CrossRefGoogle Scholar
  29. 29.
    Wong, Q.N., Ng, V.C., Lin, M.C., Kung, H.F., Chan, D. et al. (2005). Efficient and seamless DNA recombineering using a thymidylate synthase: a selection system in Escherichia coli. Nucleic Acids Res. 33. e59.Google Scholar
  30. 30.
    Pósfai, G., Kolisnychenko, V., Bereczki, Z., & Blattner, F. R. (1999). Markerless gene replacement in Escherichia coli stimulated by a double-strand break in the chromosome. Nucleic Acids Res, 27, 4409–4415.CrossRefGoogle Scholar
  31. 31.
    Yu, B.J., Kang, K.H., Lee, J.H., Sung, B.H., Kim, M.S. and Kim, S.C. (2008). Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res. 36. e84.Google Scholar
  32. 32.
    Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239.CrossRefGoogle Scholar
  33. 33.
    Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: customizable proteins for DNA targeting. Science, 333, 1843–1846.CrossRefGoogle Scholar
  34. 34.
    Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews. Genetics, 11, 636–646.CrossRefGoogle Scholar
  35. 35.
    Stearns, T., Ma, H., & Botstein, D. (1990). Manipulating yeast genome using plasmid vectors. Methods Enzymol, 185, 280––297.CrossRefGoogle Scholar
  36. 36.
    Boeke, J., Lacroute, F., & Fink, G. R. (1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet, 197, 345–346.CrossRefGoogle Scholar
  37. 37.
    Güldener, U., Heck, S., Fiedler, T., Beinhauer, J., & Hegemann, J. H. (1996). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res, 24, 2519–2524.CrossRefGoogle Scholar
  38. 38.
    Akada, R., Kitagawa, T., Kaneko, S., Toyonaga, D., Ito, S., Kakihara, Y., Hoshida, H., Morimura, S., Kondo, A., & Kida, K. (2006). PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast, 23, 399–405.CrossRefGoogle Scholar
  39. 39.
    Noskov, V. N., Segall-Shapiro, T. H., & Chuang, R. Y. (2010). Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res, 38, 2570–2576.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Crystal Jing Ying Tear
    • 1
  • Chanyuen Lim
    • 1
  • Hua Zhao
    • 1
    Email author
  1. 1.Industrial Biotechnology Division, Institute of Chemical & Engineering SciencesAgency for Science, Technology and Research (A*STAR)Jurong IslandSingapore

Personalised recommendations