Skip to main content
Log in

Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Production of small recombinant peptides by expressing them as fusion proteins, with subsequent proteolytic or chemical cleavage of the latter, is a widespread approach in modern biotechnology. An alternative method is to produce such peptides as self-cleaving fusion proteins with inteins. To date, only a small proportion of known inteins have been used for this purpose, and analysis of other inteins for the ability to cleave off the target polypeptide can significantly expand the range of intein-based transgenic constructs available to researchers. Most interesting in practical terms are С-terminal cleavage constructs for producing target polypeptides without an N-terminal methionine residue. We prepared two new such constructs with mini-inteins GyrA from Mycobacterium xenopi and RIR1 from Methanobacterium thermoautotrophicum. Together with the previous construct based on the artificial mini-intein derived from Synechocystis sp. DnaB intein, they were used to produce a recombinant analog of anophelin, the naturally occurring thrombin inhibitor from the mosquito Anopheles albimanus. The effectiveness of the constructs with Ssp DnaB and Mth RIR1 proved to be relatively low because of spontaneous fusion protein cleavage during the producer strain culturing in the former case and a low degree of its cleavage upon purification in the latter case. The most effective Mxe GyrA construct was used to develop a semipreparative procedure for producing recombinant anophelin, with its yield reaching 91 ± 2 mg protein per liter of culture medium. As determined by an amidolytic assay, the antithrombin activity and K i of recombinant anophelin were 3362.8 ATU/mg and 87 ± 3 рМ, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Elleuche, S., & Poggeler, S. (2010). Inteins, valuable genetic elements in molecular biology and biotechnology. Applied Microbiology and Biotechnology, 87, 479–489.

    Article  CAS  Google Scholar 

  2. Perler, F. B. (2002). InBase: the Intein Database. Nucleic Acids Research, 30, 383–384.

    Article  CAS  Google Scholar 

  3. Xu, M. Q., & Evans, T. C., Jr. (2001). Intein-mediated ligation and cyclization of expressed proteins. Methods, 24, 257–277.

    Article  CAS  Google Scholar 

  4. Aranko, A. S., Zuger, S., Buchinger, E., & Iwai, H. (2009). In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins. PloS One, 4, e5185.

    Article  Google Scholar 

  5. Wood, D. W., Wu, W., Belfort, G., Derbyshire, V., & Belfort, M. (1999). A genetic system yields self-cleaving inteins for bioseparations. Nature Biotechnology, 17, 889–892.

    Article  CAS  Google Scholar 

  6. Banki, M. R., & Wood, D. W. (2005). Inteins and affinity resin substitutes for protein purification and scale up. Microbial Cell Factories, 4, 32.

    Article  Google Scholar 

  7. Mathys, S., Evans, T. C., Chute, I. C., Wu, H., Chong, S., Benner, J., Liu, X. Q., & Xu, M. Q. (1999). Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene, 231, 1–13.

    Article  CAS  Google Scholar 

  8. Esipov, R. S., Stepanenko, V. N., Chupova, L. A., Boyarskikh, U. A., Filipenko, M. L., & Miroshnikov, A. I. (2008). Production of recombinant human epidermal growth factor using Ssp dnaB mini-intein system. Protein Expression and Purification, 61, 1–6.

    Article  CAS  Google Scholar 

  9. Esipov, R. S., Stepanenko, V. N., Gurevich, A. I., Chupova, L. A., & Miroshnikov, A. I. (2006). Production and purification of recombinant human glucagon overexpressed as intein fusion protein in Escherichia coli. Protein and Peptide Letters, 13, 343–347.

    Article  CAS  Google Scholar 

  10. Kostromina, M. A., Esipov, R. S., & Miroshnikov, A. I. (2012). Biotechnological production of recombinant analogs of hirudin-1 from Hirudo medicinalis. Russian Journal of Bioorganic Chemistry, 38, 142–151.

    Article  CAS  Google Scholar 

  11. Machova, Z., & Beck-Sickinger, A. G. (2005). Expressed protein ligation for protein semisynthesis and engineering. Methods in Molecular Biology, 298, 105–130.

    CAS  Google Scholar 

  12. Evans, T. C., Jr., Benner, J., & Xu, M. Q. (1999). The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. Journal of Biological Chemistry, 274, 3923–3926.

    Article  CAS  Google Scholar 

  13. Southworth, M. W., Amaya, K., Evans, T. C., Xu, M. Q., & Perler, F. B. (1999). Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques, 27, 110–114. 116, 118-20.

    CAS  Google Scholar 

  14. Starokadomskii, P. L., Okunev, O. V., Irodov, D. M., & Kordium, V. A. (2008). Utilizing of protein splicing for human growth hormone purification. Molecular Biology, 42, 1085–1092.

    CAS  Google Scholar 

  15. Chong, S., Montello, G. E., Zhang, A., Cantor, E. J., Liao, W., Xu, M. Q., & Benner, J. (1998). Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Research, 26, 5109–5115.

    Article  CAS  Google Scholar 

  16. Noren, C. J., Wang, J., & Perler, F. B. (2000). Dissecting the chemistry of protein splicing and its applications. Angewandte Chemie International Edition in English, 39, 450–466.

    Article  CAS  Google Scholar 

  17. Valenzuela, J. G., Francischetti, I. M., & Ribeiro, J. M. (1999). Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus. Biochemistry, 38, 11209–11215.

    Article  CAS  Google Scholar 

  18. Figueiredo, A. C., de Sanctis, D., Gutierrez-Gallego, R., Cereija, T. B., Macedo-Ribeiro, S., Fuentes-Prior, P., & Pereira, P. J. (2012). Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proceedings of the National Academy of Sciences of the United States of America, 109, E3649–E3658.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Nakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Research, 28, 292.

    Article  CAS  Google Scholar 

  21. Rouillard, J. M., Lee, W., Truan, G., Gao, X., Zhou, X., & Gulari, E. (2004). Gene2Oligo: oligonucleotide design for in vitro gene synthesis. Nucleic Acids Research, 32, W176–W180.

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  23. Stone, S. R., & Hofsteenge, J. (1986). Kinetics of the inhibition of thrombin by hirudin. Biochemistry, 25, 4622–4628.

    Article  CAS  Google Scholar 

  24. Xu, M. Q., & Perler, F. B. (1996). The mechanism of protein splicing and its modulation by mutation. EMBO Journal, 15, 5146–53.

    CAS  Google Scholar 

  25. Francischetti, I. M., Valenzuela, J. G., & Ribeiro, J. M. (1999). Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry, 38, 16678–16685.

    Article  CAS  Google Scholar 

  26. Mujika, J. I., Lopez, X., & Mulholland, A. J. (2012). Mechanism of C-terminal intein cleavage in protein splicing from QM/MM molecular dynamics simulations. Organic and Biomolecular Chemistry, 10, 1207–1218.

    Article  CAS  Google Scholar 

  27. Klabunde, T., Sharma, S., Telenti, A., Jacobs, W. R., Jr., & Sacchettini, J. C. (1998). Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing. Natural Structural Biology, 5, 31–36.

    Article  CAS  Google Scholar 

  28. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C., Lee, H., Dubois, J., Aldredge, T., Bashirzadeh, R., Blakely, D., Cook, R., Gilbert, K., Harrison, D., Hoang, L., Keagle, P., Lumm, W., Pothier, B., Qiu, D., Spadafora, R., Vicaire, R., Wang, Y., Wierzbowski, J., Gibson, R., Jiwani, N., Caruso, A., Bush, D., Safer, H., Patwell, D., Prabhakar, S., Mcdougall, S., Shimer, G., Goyal, A., Pietrokovski, S., Church, G. M., Daniels, C. J., Mao, J. I., Rice, P., Nolling, J. R., & Reeve, J. N. (1997). Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. Journal of Bacteriology, 179, 7135–7155.

    CAS  Google Scholar 

  29. Chen, W., Li, L., Du, Z., Liu, J., Reitter, J. N., Mills, K. V., Linhardt, R. J., & Wang, C. (2012). Intramolecular disulfide bond between catalytic cysteines in an intein precursor. Journal of the American Chemical Society, 134, 2500–2503.

    Article  CAS  Google Scholar 

  30. Nicastri, M. C., Xega, K., Li, L., Xie, J., Wang, C., Linhardt, R. J., Reitter, J. N., & Mills, K. V. (2013). Internal disulfide bond acts as a switch for intein activity. Biochemistry, 52, 5920–7.

    Article  CAS  Google Scholar 

  31. Han, J. C., & Han, G. Y. (1994). A procedure for quantitative determination of tris(2-carboxyethyl)phosphine, an odorless reducing agent more stable and effective than dithiothreitol. Analytical Biochemistry, 220, 5–10.

    Article  CAS  Google Scholar 

  32. Cleland, W. W. (1964). Dithiothreitol, a new protective reagent for SH groups. Biochemistry, 3, 480–482.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research under Grant 13-04-00731.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman S. Esipov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esipov, R.S., Kostromina, M.A. Comparative Analysis of the Effectiveness of C-terminal Cleavage Intein-Based Constructs in Producing a Recombinant Analog of Anophelin, an Anticoagulant from Anopheles albimanus . Appl Biochem Biotechnol 175, 2468–2488 (2015). https://doi.org/10.1007/s12010-014-1400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1400-6

Keywords

Navigation