Skip to main content
Log in

(R)-PAC Biosynthesis in [BMIM][PF6]/Aqueous Biphasic System Using Saccharomyces cerevisiae BY4741 Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

(R)-phenylacetylcarbinol or (R)-PAC is a pharmaceutical precursor of (1R, 2S) ephedrine and (1S, 2S) pseudoephedrine. Biotransformation of benzaldehyde and glucose by pyruvate decarboxylase produces (R)-PAC. This biotransformation suffers from toxicity of the substrate, product [(R)-PAC] and by-product (benzyl alcohol). In the present study, ionic liquid/aqueous biphasic system was employed to enhance (R)-PAC production. Fermented broth was the reaction medium in which Saccharomyces cerevisiae BY4741 was the source of pyruvate decarboxylase. Hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was the non-aqueous phase in which toxic compounds reside. Biocompatibility of [BMIM][PF6] and adequate distribution coefficients of benzaldehyde, (R)-PAC and benzyl alcohol were determined. A Box-Behnken design and response surface methodology were used for the optimization of biotransformation variables in order to maximize (R)-PAC yield and productivity. The results showed higher (R)-PAC yield and productivity of ∼1.5-fold each in the biphasic biotransformation of phase volume ratio 0.05 as compared to the monophasic (conventional) biotransformation. Moreover, the level of major by-product benzyl alcohol was also 3.5-fold lower in biphasic biotransformation. [BMIM][PF6]/aqueous biphasic system is a new approach which could intensify the (R)-PAC production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leksawasdi, N., Chow, Y. Y. S., Breuer, M., Hauer, B., Rosche, B., & Rogers, P. L. (2004). Journal of Biotechnology, 111, 179–189.

    Article  CAS  Google Scholar 

  2. Long, A., & Ward, O. P. (1989). Biotechnology and Bioengineering, 34, 933–941.

    Article  CAS  Google Scholar 

  3. Agarwal, S. C., Basu, S. K., Vora, V. C., Mason, J. R., & Pirt, S. J. (1987). Biotechnology and Bioengineering, 29, 783–785.

    Article  CAS  Google Scholar 

  4. Oliver, A. L., Anderson, B. N., & Roddick, F. A. (1999). Advances in Microbial Physiology, 41, 1–45.

    Article  CAS  Google Scholar 

  5. Mahmoud, W. M., El-Sayed, A. M. M., & Coughlin, R. W. (1990). Biotechnology and Bioengineering, 36, 256–262.

    Article  CAS  Google Scholar 

  6. Mahmoud, W. M., El-Sayed, A. M. M., & Coughlin, R. W. (1990). Biotechnology and Bioengineering, 36, 47–54.

    Article  CAS  Google Scholar 

  7. Mahmoud, W. M., El-Sayed, A. M. M., & Coughlin, R. W. (1990). Biotechnology and Bioengineering, 36, 55–63.

    Article  CAS  Google Scholar 

  8. Mandwal, A. K., Tripathi, C. K. M., Trivedi, P. D., Joshi, A. K., Agarwal, S. C., & Bihari, V. (2004). Biotechnology Letters, 26, 217–221.

    Article  CAS  Google Scholar 

  9. Shin, H. S., & Rogers, P. L. (1995). Applied Microbiology and Biotechnology , 44, 7–14.

    Article  CAS  Google Scholar 

  10. Tripathi, C. K. M., Basu, S. K., Vora, V. C., Mason, J. R., & Pirt, S. J. (1997). Indian J. Experimental Biology, 35, 886–889.

    CAS  Google Scholar 

  11. Vojtisek, V., & Netrval, J. (1982). Folia Microbiologica, 27, 173–177.

    Article  CAS  Google Scholar 

  12. Nikolova, P., & Ward, O. P. (1992). Journal of Industrial Microbiology, 10, 169–177.

    Article  CAS  Google Scholar 

  13. Rosche, B., Sandford, V., Breuer, M., Hauer, B. and Rogers, P.L. (2002). Journal of Molecular Catalysis B Enzymatic, 19–20, 109–115.

  14. Sandford, V., Breuer, M., Hauer, B., & Rogers, P. L. (2005). Biotechnology and Bioengineering, 91, 190–198.

    Article  CAS  Google Scholar 

  15. Rosche, B., Breuer, M., Hauer, B., & Rogers, P. L. (2005). Biotechnology Letters, 27, 575–581.

    Article  CAS  Google Scholar 

  16. van Rantwijk, F., Madeira, L. R., & Sheldon, R. A. (2003). Trends in Biotechnology, 21, 131–138.

    Article  Google Scholar 

  17. Wasserscheid, P., & Keim, W. (2000). Angewandte Chemie, International Edition, 39, 3772–3789.

    Article  CAS  Google Scholar 

  18. Sureshkumar, M., & Lee, C. K. (2009). Journal of Molecular Catalysis B: Enzymatic, 60, 1–12.

    Article  CAS  Google Scholar 

  19. Weuster-Botz, D. (2007). Chemical Record, 7, 334–340.

    Article  CAS  Google Scholar 

  20. Cull, G., Holbrey, J. D., Vargas-Mora, V., Seddon, K. R., & Lye, G. J. (2000). Biotechnology and Bioengineering, 69, 227–233.

    Article  CAS  Google Scholar 

  21. Howarth, J., James, P., & Dai, J. (2001). Tetrahedron Letters, 42, 7517–7519.

    Article  CAS  Google Scholar 

  22. Lou, W. Y., Zong, M. H., & Smith, T. J. (2006). Green Chemistry, 8, 147–155.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Rosche, B., Leksawasdi, N., Sandford, V., Breuer, M., Hauer, B., & Rogers, P. L. (2002). Applied Microbiology and Biotechnology, 60, 94–100.

    Article  CAS  Google Scholar 

  25. Brautigam, S., Bringer-Meyer, S., & Weuster-Botz, D. (2007). Tetrahedron Asymmetry, 18, 1883–1887.

    Article  Google Scholar 

  26. Gangu, S. A., Weatherley, L. R., & Scurto, A. M. (2009). Current Organic Chemistry, 13, 1242–1258.

    Article  CAS  Google Scholar 

  27. Ganske, F., & Bornscheuer, U. T. (2006). Biotechnology Letters, 28, 465–469.

  28. Pfruender, H., Jones, R., & Weuster-Botz, D. (2006). Journal of Biotechnology, 124, 182–190.

    Article  CAS  Google Scholar 

  29. Long, A., & Ward, O. P. (1989). Journal of Industrial Microbiology, 4, 49–53.

    Article  CAS  Google Scholar 

  30. Deken R. H. D. (1966). Journal of General Microbiology, 44, 149–156.

    Article  Google Scholar 

  31. Shukla, V. B., & Kulkarni, P. R. (2001). World Journal of Microbiology and. Biotechnology, 17, 301–306.

    Article  CAS  Google Scholar 

  32. Wang, W., Zong, M. H., & Lou, W. Y. (2009). Journal of Molecular Catalysis B: Enzymatic, 56, 70–76.

    Article  CAS  Google Scholar 

  33. Zhang, Y., Huang, X., & Li, Y. (2008). Journal of Chemical Technology and Biotechnology, 83, 1230–1235.

    Article  CAS  Google Scholar 

  34. Khan, T. R., & Daugulis, A. J. (2010). Biotechnology and Bioengineering, 107, 633–641.

    Article  CAS  Google Scholar 

  35. Dennewald, D., Pitner, W. R., & Weuster-Botz, D. (2011). Process Biochemistry, 46, 1132–1137.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (Smita Kandar) is thankful to the Indian Institute of Technology Bombay for providing a Quality Improvement Programme (QIP) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Kandar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandar, S., Suresh, A.K. & Noronha, S.B. (R)-PAC Biosynthesis in [BMIM][PF6]/Aqueous Biphasic System Using Saccharomyces cerevisiae BY4741 Cells. Appl Biochem Biotechnol 175, 1771–1788 (2015). https://doi.org/10.1007/s12010-014-1394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1394-0

Keywords

Navigation