Skip to main content
Log in

Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp Peptide Derived from Collagen and Fibronectin for Improving Cell–Scaffold Interaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Suitable scaffolds for tissue engineering should provide a microenvironment for cell dwelling and directing cell behavior that resemble the native environment. Three-dimensional geometry of electrospun scaffolds well supports cell deposition, but they often lack biomacromolecules to induce cell responses. In this work, the repetitive collagen and fibronectin motif (rCF) peptide containing multiple repeats of Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp sequence derived from the cell adhesion motifs of collagen and fibronectin was produced as the alternative agent to induce cell–scaffold interaction. The DNA fragment encoding rCF peptide was amplified by a polymerase chain reaction using overlap primers without a DNA template, cloned into a protein expression vector, and expressed as a His–tag fusion peptide in Escherichia coli. The purified rCF peptide possessed cell adhesion activity about 1.5-fold of the commercial RGD peptide. The rCF peptide was grafted onto the electrospun PCL scaffold via RF plasma of Ar/O2 discharge and acrylic acid treatment. The immobilized rCF peptide significantly increased surface hydrophilicity and enhanced cell proliferation of the electrospun PCL scaffold. These findings suggest the potential application of rCF peptide for improving the biomimetic functions of polymeric scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

rCF:

The repetitive collagen and fibronectin motif peptide

References

  1. Karp, J. M., & Langer, R. (2007). Current Opinion in Biotechnology, 18, 454–459.

    Article  CAS  Google Scholar 

  2. Langer, R., & Tirrell, D. A. (2004). Nature, 428, 487–492.

    Article  CAS  Google Scholar 

  3. Mo, X. M., Xub, C. Y., Kotakib, M., & Ramakrishna, S. (2004). Biomaterials, 25, 1883–1890.

    Article  CAS  Google Scholar 

  4. Hodde, J. (2006). ANZ Journal of Surgery, 76, 1096–1100.

    Article  Google Scholar 

  5. Nerurkar, N. L., Elliott, D. M., & Mauck, R. L. (2007). Journal of Orthopaedic Research, 25, 1018–1028.

    Article  CAS  Google Scholar 

  6. Chew, S. Y., Wen, Y., Dzenis, Y., & Leong, K. W. (2006). Current Pharmaceutical Design, 12, 4751–4770.

    Article  CAS  Google Scholar 

  7. Bhardwaj, N., & Kundu, S. C. (2010). Biotechnology Advances, 28, 325–347.

    Article  CAS  Google Scholar 

  8. Li, W. J., Laurencin, C. T., Caterson, E. J., Tuan, R. S., & Ko, F. K. (2002). Journal of Biomedical Materials Research, 60, 613–621.

    Article  CAS  Google Scholar 

  9. Goldberg, M. E., Langer, R., & Jia, Q. X. (2007). Journal of Biomaterials Science Polymer Edition, 18, 241–268.

    Article  CAS  Google Scholar 

  10. Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Journal of Materials Science: Materials in Medicine, 16, 933–946.

    CAS  Google Scholar 

  11. Hartman, O., Zhang, C., Adams, E. L., Farach–Carson, M. C., Petrelli, N. J., Chase, B. D., & Rabolt, J. F. (2010). Biomaterials, 31, 5700–5718.

    Article  CAS  Google Scholar 

  12. Cheng, Z., & Teoh, S. H. (2004). Biomaterials, 25, 1991–2001.

    Article  CAS  Google Scholar 

  13. Li, W., Guo, Y., Wang, H., Shi, D., Liang, C., Ye, Z., Qing, F., & Gong, J. (2008). Journal of Materials Science: Materials in Medicine, 19, 847–854.

    CAS  Google Scholar 

  14. Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A. P., Rofail, F., Smith, H., Wu, B. M., Shemin, R., Beygui, R. E., & MacLellan, W. R. (2008). Biomaterials, 29, 2907–2914.

    Article  CAS  Google Scholar 

  15. Koh, H. S., Yong, T., Chan, C. K., & Ramakrishna, S. (2008). Biomaterials, 29, 3574–3582.

    Article  CAS  Google Scholar 

  16. Kadler, K. E., Hill, A., & Canty-Laird, E. G. (2008). Current Opinion in Cell Biology, 20, 495–501.

    Article  CAS  Google Scholar 

  17. Klein, R. M., Zheng, M., Ambesi, A., Van De Water, L., & McKeown–Longo, P. J. (2003). Journal of Cell Science, 116, 4663–4674.

    Article  CAS  Google Scholar 

  18. Singh, P., Carraher, C., & Schwarzbauer, J. E. (2010). Annual Review of Cell and Developmental Biology, 26, 397–419.

    Article  CAS  Google Scholar 

  19. Bae, E., Sakai, T., & Mosher, D. F. (2004). The Journal of Biological Chemistry, 279, 35749–35759.

    Article  CAS  Google Scholar 

  20. Green, J. A., Berrier, A. L., Pankov, R., & Yamada, K. M. (2009). The Journal of Biological Chemistry, 284, 8148–8159.

    Article  CAS  Google Scholar 

  21. Hersel, U., Dahmen, C., & Kessler, H. (2003). Biomaterials, 24, 4385–4415.

    Article  CAS  Google Scholar 

  22. Regis, S., Youssefian, S., Jassal, M., Phaneuf, M. D., Rahbar, N., & Bhowmick, S. (2014). Journal of Biomedical Materials Research, Part A, 102, 1697–1706.

    Article  Google Scholar 

  23. Capkın, M., Cakmak, S., Kurt, F. O., Gumusderelioglu, M., Sen, B. H., Turk, B. T., & Deliloglu–Gurhan, S. I. (2012). Biomedical Materials, 7, 045013.

    Article  Google Scholar 

  24. Andukuri, A., Kushwaha, M., Tambralli, A., Anderson, J. M., Dean, D. R., Berry, J. L., Sohn, Y. D., Yoon, Y. S., Brott, B. C., & Jun, H. W. (2011). Acta Biomaterialia, 7, 225–233.

    Article  CAS  Google Scholar 

  25. Siri, S., Wadbua, P., Amornkitbamrung, V., Kampa, N., & Maensiri, S. (2010). Materials Science and Technology, 26, 1292–1297.

    Article  CAS  Google Scholar 

  26. Buttafoco, L., Kolkman, N. G., Engbers–Buijtenhuijsa, P., Poota, A. A., Dijkstraa, P. J., Vermesa, I., & Feijena, J. (2006). Biomaterials, 27, 724–34.

    Article  CAS  Google Scholar 

  27. Mao, Y., & Schwarzbauer, J. E. (2005). Matrix Biology, 24, 389–399.

    Article  CAS  Google Scholar 

  28. Jun, H. W., & West, J. L. (2005). Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 131–139.

    Article  CAS  Google Scholar 

  29. Park, K. H., Na, K., & Lee, K. C. (2004). Journal of Bioscience and Bioengineering, 97, 207–211.

    Article  CAS  Google Scholar 

  30. Park, K. H., Na, K., & Lee, K. C. (2008). Journal of Cell Science, 121, 2452–2462.

    Article  Google Scholar 

  31. Castillo-Briceno, P., Bihan, D., Nilges, M., Hamaia, S., Meseguer, J., Garcia-Ayala, A., Farndale, R. W., & Mulero, V. (2011). Molecular Immunology, 48, 826–834.

    Article  CAS  Google Scholar 

  32. Raynal, N., Hamaia, S. W., Siljander, P. R., Maddox, B., Peachey, A. R., Fernandez, R., Foley, L. J., Slatter, D. A., Jarvis, G. E., & Farndale, R. W. (2006). The Journal of Biological Chemistry, 281, 3821–3831.

    Article  CAS  Google Scholar 

  33. Hwang, D. S., Sim, S. B., & Cha, H. J. (2007). Biomaterials, 28, 4039–4046.

    Article  CAS  Google Scholar 

  34. Huang, X., Zauscher, S., Klitzman, B., Truskey, G. A., Reichert, W. M., Kenan, D. J., & Grinstaff, M. W. (2010). Annals of Biomedical Engineering, 38, 1965–1976.

    Article  Google Scholar 

  35. International standard: ISO10993-5 (2009) Biological evaluation of medical devices—part 5: tests for cytotoxicity, in vitro methods.

  36. Garcia-Fruitos, E., Vazquez, E., Diez-Gil, C., Corchero, J., Seras-Franzoso, J., Ratera, I., Veciana, J., & Villaverde, A. (2012). Trends in Biotechnology, 30, 65–70.

    Article  CAS  Google Scholar 

  37. Carrio, M. M., & Villaverde, A. (2001). FEBS Letters, 489, 29–33.

    Article  CAS  Google Scholar 

  38. Kurihara, H., & Nagamune, T. (2005). Journal of Bioscience and Bioengineering, 100, 82–7.

    Article  CAS  Google Scholar 

  39. Salsmann, A., Schaffner-Reckinger, E., & Kieffer, N. (2006). European Journal of Cell Biology, 85, 249–254.

    Article  CAS  Google Scholar 

  40. Barczyk, M., Carracedo, S., & Gullberg, D. (2010). Cell and Tissue Research, 339, 269–280.

    Article  CAS  Google Scholar 

  41. Kurihara, H., Shinkai, M., & Nagamune, T. (2004). Biochemical and Biophysical Research Communications, 321, 988–993.

    Article  CAS  Google Scholar 

  42. Narayanan, P. V. (1994). Journal of Biomaterials Science Polymer Edition, 6, 181–193.

    Article  CAS  Google Scholar 

  43. Ghasemi–Mobarakeh, L., Prabhakaran, M. P., Morshed, M., Nasr-Esfahani, M. H., & Ramakrishna, S. (2008). Biomaterials, 29, 4532–4539.

    Article  Google Scholar 

  44. Elzein, T., Nasser-Eddine, M., Delaite, C., Bistac, S., & Dumas, P. (2004). Journal of Colloid and Interface Science, 273, 381–387.

    Article  CAS  Google Scholar 

  45. Schwartz, M. A., & Assoian, R. K. (2001). Journal of Cell Science, 114, 2553–2560.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the SUT Research and Development Support Fund. We also thank Assistant Professor B. Boonyapalanan for his kindness to allow us to use his electrospinning unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sineenat Siri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaisri, P., Chingsungnoen, A. & Siri, S. Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp Peptide Derived from Collagen and Fibronectin for Improving Cell–Scaffold Interaction. Appl Biochem Biotechnol 175, 2489–2500 (2015). https://doi.org/10.1007/s12010-014-1388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1388-y

Keywords

Navigation