Skip to main content
Log in

A New Amperometric Biosensor Based on Fe3O4/Polyaniline/Laccase/Chitosan Biocomposite-Modified Carbon Paste Electrode for Determination of Catechol in Tea Leaves

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, a new biosensor based on laccase from Paraconiothyrium variabile was developed for catechol. The purified enzyme entrapped into the Fe3O4/polyaniline/chitosan (Fe3O4/polyaniline (PANI)/chitosan (CS)) biocomposite matrix film without the aid of other cross-linking reagents by a one-step electrodeposition on the surface of carbon paste electrode (CPE). The formed layer of biocomposite was characterized with scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The biosensor was optimized with respect to biocomposite composition, enzyme loading, and solution pH by amperometry method. The biosensor exhibited noticeable eletrocatalytic ability toward catechol with a linear concentration range from 0.5 to 80 μM and a detection limit of 0.4 μM. The biosensor showed optimum response within 8 s, at pH 5, and 40 °C. The apparent Michaelis–Menten (K M app) was found to be 1.092 μM. The fabricated biosensor could be applied for determination of catechol in tea leaf samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Usmani, Q. S., Beg, M. M., & Shukla, I. C. (1979). Analyst, 104, 148–151.

    Article  CAS  Google Scholar 

  2. Ng, L. K., Lafontaine, P., & Harnois, J. (2000). Journal of Chromatography A, 873, 29–38.

    Article  CAS  Google Scholar 

  3. Lee, B. L., Ong, H. Y., Shi, C. Y., & Ong, C. N. (1993). Journal of Chromatography A, 619, 259–266.

    Article  CAS  Google Scholar 

  4. Pistonesi, M. F., Di-Nezio, M. S., Centurión, M. E., Palomeque, M. E., Lista, A. G., & Fernández, B. S. (2006). Talanta, 69, 1265–1268.

    Article  CAS  Google Scholar 

  5. Guan, N., Zeng, Z., Wang, Y., Fu, E., & Cheng, J. (2000). Analytica Chimica Acta, 418, 145–151.

    Article  CAS  Google Scholar 

  6. Xie, T., Liu, Q., Shi, Y., & Liu, Q. (2006). Journal of Chromatography A, 1109, 317–321.

    Article  CAS  Google Scholar 

  7. Yin, H., Zhang, Q., Zhoud, Y., Ma, Q., Liu, T., Zhub, L., & Aia, S. (2011). Electrochimica Acta, 56, 2748–2753.

    Article  CAS  Google Scholar 

  8. Wang, L., Huang, P., Bai, J., Wang, H., Zhang, L., & Zhao, Y. (2006). International Journal of Electrochemical Science, 1, 403–413.

    CAS  Google Scholar 

  9. Li, M., & Zhao, G.C. (2012) International Journal of Electrochemistry, DOI 243031, 1–8.

  10. Sulak, M. T., Erhan, E., & Keskinler, B. (2010). Applied Biochemistry and Biotechnology, 160, 856–867.

    Article  CAS  Google Scholar 

  11. Lin, H., Gan, T., & Wu, K. (2009). Food Chemistry, 113, 701–704.

    Article  CAS  Google Scholar 

  12. Carralero Sanz, V., Luz Mena, M., Gonzalez-Cortes, A., Yanez-Sedeno, P., & Pingarron, J. M. (2005). Analytica Chimica Acta, 528, 1–8.

    Article  CAS  Google Scholar 

  13. Liu, J., & Mattiasson, B. (2002). Water Research, 236, 3786–3802.

    Article  Google Scholar 

  14. Enache, T. A., & Oliveira-Brett, A. M. (2011). Journal of Electroanalytical Chemistry, 655, 9–16.

    Article  CAS  Google Scholar 

  15. Fernández-Fernández, M., Sanromán, M. A., & Moldes, D. (2013). Biotechnology Advances, 31, 1187.

    Article  Google Scholar 

  16. Kaushik, A., Solankia, R. P., Pande, M. K., Kaneto, K., Ahmad, S., & Malhotram, D. B. (2010). Thin Solid Films, 519, 1160–1166.

    Article  CAS  Google Scholar 

  17. Kaushik, A., Solanki, P. R., Ansari, A. A., Sumana, G., Ahmad, S., & Malhotram, D. B. (2009). Sensors and Actuators B, 138, 572–580.

    Article  CAS  Google Scholar 

  18. Tsai, Y. C., Chen, S. Y., & Lee, C. A. (2008). Sensors and Actuators B, 135, 96–101.

    Article  CAS  Google Scholar 

  19. Vianello, F., Ragusa, S., Cambria, M. T., & Rigo, A. (2006). Biosensors and Bioelectronics, 21, 2155–2160.

    Article  CAS  Google Scholar 

  20. Jarosz-Wilkołazka, A., Ruzgas, T., & Gorton, L. (2004). Enzyme and Microbial Technology, 35, 238–241.

    Article  Google Scholar 

  21. Fu, J., Qiao, H., Li, D., Luo, L., Chen, K., & Wei, Q. (2014). Sensors, 14, 3543–3556.

    Article  CAS  Google Scholar 

  22. Martinez-Ortiz, J., Flores, R., & Vazquez-Duhalt, R. (2011). Biosensors and Bioelectronics, 26, 2626–2631.

    Article  CAS  Google Scholar 

  23. Chawla, S., Rawal, R., Kuhad, S. R. C., & Pundir, C. S. (2011). Analytical Methods, 3, 709–714.

    Article  CAS  Google Scholar 

  24. Ibarra-Escutia, P., Gomez, J. J., Calas-Blanchard, C., Marty, J. L., & Ramírez-Silva, M. T. (2010). Talanta, 15, 1636–1642.

    Article  Google Scholar 

  25. Montereali, M. R., Seta, L. D., Vastarella, W., & Pilloton, R. (2010). Journal of Molecular Catalysis B, 64, 189–194.

    Article  CAS  Google Scholar 

  26. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., & Xie, G. (2012). Bioresource Technology, 115, 21–26.

    Article  CAS  Google Scholar 

  27. Brady, D., & Jordaan, J. (2009). Biotechnology Letters, 31, 1639–1650.

    Article  CAS  Google Scholar 

  28. Cabaj, J., Sołoducho, J., Chyla, A., & Jedrychowska, A. J. (2011). Sensors and Actuators B, 157, 225–231.

    Article  CAS  Google Scholar 

  29. Li, Y., Cao, X., Qian, X., Chen, Y., & Liu, S. (2012). Journal of Electroanalytical Chemistry, 686, 7–11.

    Article  CAS  Google Scholar 

  30. Krajewskam, B. (2004). Enzyme and Microbial Technology, 35, 126–139.

    Article  Google Scholar 

  31. Kalkan, N., Aksoy, S., Aksoy, E. A., & Hasirci, N. (2012). Journal of Applied Polymer Science, 123, 707–716.

    Article  CAS  Google Scholar 

  32. Jiang, D.-S., Long, S. Y., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Biochemical Engineering Journal, 25, 15–23.

    Article  Google Scholar 

  33. Bayramoglu, G., Yilmaz, M., & Yakup, A. M. (2010). Bioprocess and Biosystems Engineering, 33, 439–448.

    Article  CAS  Google Scholar 

  34. Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., & Dong, S. (2006). Biosensors and Bioelectronics, 21, 2195–2201.

    Article  CAS  Google Scholar 

  35. Chawla, S., Rawal, R., & Pundir, C. S. (2011). Journal of Biotechnology, 156, 39–45.

    Article  CAS  Google Scholar 

  36. Chawla, S., Rawal, R., Sharma, S., & Pundir, C. S. (2012). Biochemical Engineering Journal, 68, 76–84.

    Article  CAS  Google Scholar 

  37. Rossi, L. M., Quach, A. D., & Rosenzweig, Z. (2004). Analytical and Bioanalytical Chemistry, 380, 606–613.

    Article  CAS  Google Scholar 

  38. Wei, H., & Wang, E. (2008). Analytical Chemistry, 80, 2250–2254.

    Article  CAS  Google Scholar 

  39. Nguyen, B. H., Tran, L. D., Do, Q. P., Nguyen, H. L., Tran, N. H., & Nguyen, P. X. (2013). Material Science and Engineering C, 33, 2229–2234.

    Article  CAS  Google Scholar 

  40. Delanoy, G., Li, Q., & Yu, J. (2005). International Journal of Biological Macromolecules, 35, 89–95.

    Article  CAS  Google Scholar 

  41. Forootanfar, H., Faramarzi, M. A., Shahverdi, A. R., & TabatabaeiYazdi, M. (2011). Bioresource Technology, 102, 1808–1814.

    Article  CAS  Google Scholar 

  42. Faramarzia, M. A., & Forootanfara, H. (2001). Colloids and Surfaces B: Biointerfaces, 87, 23–27.

    Article  Google Scholar 

  43. Berger, P., Adelman, N., Beckman, K. J., Campbell, D. J., Ellis, A. B., & Lisensky, G. C. (1999). Journal of Chemical Education, 76, 943–948.

    Article  CAS  Google Scholar 

  44. Mehdinia, A., Roohi, F., & Jabbari, A. (2011). Journal of Chromatography A, 1218, 4269–4274.

    Article  CAS  Google Scholar 

  45. Sadeghi, S., & Motaharian, A. (2013). Material Science and Engineering C, 33, 4884–4891.

    Article  CAS  Google Scholar 

  46. Qiao, J.-Q., Yuan, N., Tang, C.-J., Yang, J., Zhou, J., Lian, H.-Z., & Dong, L. (2012). Research on Chemical Intermediates, 38, 549–558.

    Article  CAS  Google Scholar 

  47. Zhou-Hong, X., Liu-Hua, L., Bai, X., & Shi-Chung, H. (2013). Sensors and Actuators B, 181, 661–667.

    Article  Google Scholar 

  48. Lineweaver, H., & Burk, D. (1934). Journal of American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  49. Xu, X., Lu, P., Zhou, Y., Zhao, Z., & Guo, M. (2009). Material Science and Engineering C, 29, 2160–2164.

    Article  CAS  Google Scholar 

  50. Xu, X., Guo, M., Lu, P., & Wang, R. (2010). Material Science and Engineering C, 30, 722–729.

    Article  CAS  Google Scholar 

  51. Li, D., Pang, Z., Chen, X., Luo, L., Cai, Y., & Wei, Q. (2014). Beilstein Journal of Nanotechnology, 5, 346–354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, S., Fooladi, E. & Malekaneh, M. A New Amperometric Biosensor Based on Fe3O4/Polyaniline/Laccase/Chitosan Biocomposite-Modified Carbon Paste Electrode for Determination of Catechol in Tea Leaves. Appl Biochem Biotechnol 175, 1603–1616 (2015). https://doi.org/10.1007/s12010-014-1380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1380-6

Keywords

Navigation