Skip to main content

Advertisement

Log in

Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This manuscript presents a study on alkaline pretreatment of Vietnamese rice (Oryza sativa L.) straw that grows in Northern Vietnam for enzymatic saccharification. The NaOH pretreatment (soda cooking) and NaOH/Na2S pretreatment (sulfate cooking) were applied for rice straw pretreatment, which have relatively similar condition with industrial pulping processes but at lower temperature. Pretreated biomass solid was then enzymatic hydrolyzed by commercial enzyme Cellic®CTec2 (Novozymes) with enzyme dosage of 35 FPU/g to achieve reducing sugars. The suitable condition for pretreatment was found at temperature of about 100 °C, pretreatment time of 2 h, and solid/liquid ratio of 1:10 with active alkali dosage of 20 % of dry rice straw. Under this pretreatment condition, sugar yield in enzymatic hydrolysis up to 45.33 and 48.92 % over dry rice straw could be obtained after soda cooking and sulfate cooking pretreatment, respectively. Moreover, the changes of components of rice straw after pretreatment were also studied. The crystallinity of cellulose in pretreated biomass solid was calculated from XRD pattern. And the fibril morphology after treatment was revealed by the microscopic observations performed by scanning electron microscope (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mansfield, B. K., Alton, A. J., Andrews, S. H., Bownas, J. L., Casey, D., Martin, S. A., Mills, M., Nylander, K., & Wyrick, J. M. (2005). Breaking the biological barriers to cellulosic ethanol: a joint research agenda, research roadmap resulting from the biomass to biofuels workshop, December 7–9. Rockville: U.S. Department of Energy.

    Google Scholar 

  2. Dien, L. Q., Hoang, P. H., & Tu, D. T. (2014). Applied Biochemistry and Biotechnology, 172, 1565–1573.

    Article  CAS  Google Scholar 

  3. Balan, V., Bals, B., Chundawat, S. P., Marshall, D., & Dale, B. E. (2009). Methods in Molecular Biology, 581, 61–77.

    Article  CAS  Google Scholar 

  4. Chaturvedi, V., & Verma, P. (2013). Biotechnology, 3, 415–431.

    Google Scholar 

  5. Adsul, M. G., Singhvi, M. S., Gaikaiwari, S. A., & Gokhale, D. V. (2011). Bioresource Technology, 102(6), 4304–4312.

    Article  CAS  Google Scholar 

  6. Mosier, N. (2005). Bioresource Technology, 96(6), 673–686.

    Article  CAS  Google Scholar 

  7. Silverstain, R. A. (2007). Bioresource Technology, 98, 3000–3011.

    Article  Google Scholar 

  8. Kumar, R., Singh, S., & Singh, O. V. (2009). Journal of Industrial Microbiology and Biotechnology, 35, 377–391.

    Article  Google Scholar 

  9. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial & Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  10. Zheng, Y., Pan, Z., & Zhang, R. (2009). International Journal of Agricultural and Biological Engineering, 2(3), 51–68.

    CAS  Google Scholar 

  11. Verma, A., Kumar, S., & Jain, P. K. (2011). Journal of Scientific Research of Banaras Hindu University, Varanasi, 55, 57–63.

    Google Scholar 

  12. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  Google Scholar 

  13. Geddes, C. C., Nieves, I. U., & Ingram, L. O. (2011). Current Opinion in Biotechnology, 22(3), 312–319.

    Article  CAS  Google Scholar 

  14. Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.

    Article  CAS  Google Scholar 

  15. Eggeman, T., & Elander, R. T. (2005). Bioresource Technology, 96, 2019–2025.

    Article  CAS  Google Scholar 

  16. Liu, B., Wang, F., Zhu, X., & Jiao, A. (2011). The Open Materials Science Journal, 5, 109–117.

    Article  CAS  Google Scholar 

  17. Kim, S., & Dale, B. E. (2004). Biomass and Bioenergy, 26, 361–375.

    Article  Google Scholar 

  18. Delivand, M. K., & Barz, M. (2011). Energy, 36(3), 1435–1441.

    Article  Google Scholar 

  19. Yoswathana, N., Phuriphipat, P., Treyawutthiwat, P., & Eshtiaghi, M. N. (2010). Energy Research Journal, 1(1), 26–31.

    Article  Google Scholar 

  20. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Bioresource Technology, 101, 4767–4774.

    Article  CAS  Google Scholar 

  21. Cheng, Y. S., Yi, Z., Wei, Y. C., Dooley, T. M., Jenkins, B. M., Vander, G., & Jean, S. (2010). Applied Biochemistry and Biotechnology, 162, 1768–1784.

    Article  CAS  Google Scholar 

  22. Zhu, J. Y., Pan, X. J., Wang, G. S., & Gleisner, R. (2009). Bioresource Technology, 100(8), 2411–2418.

    Article  CAS  Google Scholar 

  23. Ek, M., Gellerstedt, G., & Henriksson, G. (2009). Pulp and paper chemistry and technology, vol. 1-2. Berlin: Walter de Gruyter GmbH&Co.

    Book  Google Scholar 

  24. Standard method for pulp and paper testing of Technical Association of Pulp & Paper Industry (TAPPI).

  25. Miller, G. L. (1959). Analytical Chemistry, 31, 426.

    Article  CAS  Google Scholar 

  26. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  27. Teng-Chieh, H., Gia-Luen, G., Wen-Hua, C., & Wen-Song, H. (2010). Bioresource Technology, 101, 4907–4913.

    Article  Google Scholar 

  28. Maarten, A., Kootstra, J., Hendrik, H. B., Elinor, L. S., & Johan, P. M. S. (2009). Biochemical Engineering Journal, 46, 126–131.

    Article  Google Scholar 

  29. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042.

    Article  CAS  Google Scholar 

  30. Karp, E. M., Donohoe, B. S., O’Brien, M. H., Peter, N. C., Ashutosh, M., Mary, J. B., & Gregg, T. B. (2014). ACS Sustainable Chemistry & Engineering, 2(6), 1481–1491.

    Article  CAS  Google Scholar 

  31. Eniko, V., Zsolt, S., & Kati, R. (2002). Applied Biochemistry and Biotechnology, 98–100, 73–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Huy Hoang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dien, L.Q., Phuong, N.T.M., Hoa, D.T. et al. Efficient Pretreatment of Vietnamese Rice Straw by Soda and Sulfate Cooking Methods for Enzymatic Saccharification. Appl Biochem Biotechnol 175, 1536–1547 (2015). https://doi.org/10.1007/s12010-014-1359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1359-3

Keywords

Navigation