Skip to main content
Log in

Elucidation of Fluoranthene Degradative Characteristics in a Newly Isolated Achromobacter xylosoxidans DN002

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Strain DN002 isolated from petroleum-contaminated soil was identified as Achromobacter xylosoxidans based on morphological and biochemical properties and 16S rRNA phylogeny, and investigated for its potential to utilize numerous polycyclic aromatic hydrocarbons (PAHs) such as fluoranthene and pyrene as sole carbon and energy resource. Biodegradation studies showed that 500 mg.l−1fluranthene was degraded to 35.6 ± 0.3 mg.l−1 by DN002 after 14 days incubation. During fluoranthene biodegradation, catechol 2,3 dioxygenase (C23O) activity was augmented 1.5 times more than catechol 1,2 dioxygenase (C12O), which indicated that C23O played a major role in fluoranthene degradation by DN002. Protein profiles were examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional electrophoresis then analyzed by mass spectrometry induced by fluoranthene; a molecular mass range of 18 ∼ 66 kDa proteins were found upregulated compared with the uninduced control sample, including multiple isoenzymes of β-oxidation and dehydrogenases as well as dioxygenases. Besides, some new proteins, i.e., dihydrolipoamide succinyltransferase and aldehyde dehydrogenase family proteins and isocitrate lyase were also synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wilcke, W. (2007). Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma, 141, 157–166.

    Article  CAS  Google Scholar 

  2. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  3. Liu, S. C., Wang, C. H., Zhang, S. J., Liang, J., Chen, F., & Zhao, K. (2012). Formation and distribution of polycyclic aromatic hydrocarbons derived from coal seam combustion: a case study of the Ulanqab lignite from Inner Mongolia, Northern China. International Journal of Coal Geology, 90–91, 126–134.

    Article  Google Scholar 

  4. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.

    Article  CAS  Google Scholar 

  5. Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  6. Yan, J., Wang, L., Fu, P. P., & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research, 557, 99–108.

    Article  CAS  Google Scholar 

  7. Igwo-Ezikpe, M. N., Gbenle, O. G., Ilori, M. O., Okpuzor, J., & Osuntoki, A. A. (2010). High molecular weight polycyclic aromatic hydrocarbons biodegradation by bacteria isolated from contaminated soils in Nigeria. Research Journal of Environmental Sciences, 4, 127–137.

    Article  CAS  Google Scholar 

  8. Kanaly, R. A., & Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182, 2059–2067.

    Article  CAS  Google Scholar 

  9. Klankeo, P., Nopcharoenkul, W., & Pinyakong, O. (2009). Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil. Journal of Bioscience and Bioengineering, 108, 488–495.

    Article  CAS  Google Scholar 

  10. Kanaly, R. A., & Harayama, S. (2010). Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbial Biotechnology, 3, 136–164.

    Article  CAS  Google Scholar 

  11. Kweon, O., Kim, S. J., Jones, R. C., Freeman, J. P., Adjei, M. D., Edmondson, R. D., & Cerniglia, C. E. (2007). A polyomic approach to elucidate the fluoranthene degradative pathway in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 189, 4635–4647.

    Article  CAS  Google Scholar 

  12. Chen, S. H., & Aitken, M. D. (1999). Salicylate stimulated the degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas sacchrophia P15. Environmental Science and Technology, 33, 435–439.

    Article  CAS  Google Scholar 

  13. Lee, Y. K., Kwon, K. K., Cho, K. H., Park, J. H., & Lee, H. K. (2003). Culture and identification of bacteria from marine biofilms. The Journal of Microbiology, 41, 183–188.

    CAS  Google Scholar 

  14. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1994). The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.

    Google Scholar 

  15. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  16. Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics, 9, 299–306.

    Article  CAS  Google Scholar 

  17. Das, K., & Mukherjee, A. K. (2007). Crude petroleum oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-east India. Bioresource Technology, 98, 1339–1345.

    Article  CAS  Google Scholar 

  18. Kojima, Y., Itada, N., & Hayaishi, O. (1961). Metapyrocatachase: a new catechol-cleaving enzyme. The Journal of Biological Chemistry, 236, 2223–2228.

    CAS  Google Scholar 

  19. Lehesranta, S. J., Davies, H. V., Shepherd, L. V. T., Nunan, N., McNicol, J. W., Auriola, S., Koistinen, K. M., Suomalainen, S., Kokko, H. I., & Karenlampi, S. O. (2005). Comparison of tuber proteomes of potato varieties, landraces and genetically modified lines. Plant Physiology, 38, 1690–1699.

    Article  Google Scholar 

  20. Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 9, 255–262.

    Article  CAS  Google Scholar 

  21. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856–2860.

    Article  CAS  Google Scholar 

  22. Smith, M. R. (1994). The physiology of aromatic hydrocarbon degrading bacteria. In C. Ratledge (Ed.), Biochemistry of Microbial Degradation (pp. 347–378). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  23. Lin, Y., & Cai, L. X. (2008). PAH-degrading microbial consortium and its pyrene-degrading plasmids from mangrove sediment samples in Huian, China. Marine Pollution Bulletin, 57, 703–706.

    Article  CAS  Google Scholar 

  24. Kim, Y. H., Engesser, K. H., & Cerniglia, C. E. (2005). Numerical and genetic analysis of polycyclic aromatic hydrocarbon degrading Mycobacteria. Microbial Ecology, 50, 110–119.

    Article  CAS  Google Scholar 

  25. Kweon, O., Kim, S. J., Holland, R. D., Chen, Y., Kim, D. W., Gao, Y., Yu, L. R., Baek, S., Ahn, H., & Cerniglia, C. E. (2011). Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. Journal of Bacteriology, 193, 4326–4337.

    Article  CAS  Google Scholar 

  26. Cenci, G., & Caldini, G. (1997). Catechol dioxygenase expression in a Pseudomonas fluorescens strains exposed to different aromatic compounds. Applied Microbiology and Biotechnology, 47, 306–308.

    Article  CAS  Google Scholar 

  27. Dhote, M., Juwarkar, A., Kumar, A., Kanade, G. S., & Chakrabarti, T. (2010). Biodegradation of chrysene by the bacterial strains isolated from oily sludge. World Journal of Microbiology and Biotechnology, 26, 329–335.

    Article  CAS  Google Scholar 

  28. Kumar, S., Upadlhayay, S. K., Kumari, B., Tiwari, S., Singh, S. N., & Singh, P. K. (2011). In vitro degradation of fluoranthene by bacteria isolated from petroleum sludge. Bioresource Technology, 102, 3709–3715.

    Article  CAS  Google Scholar 

  29. Kim, S. J., Jones, R. C., Cha, C. J., Kweon, O., Edmondson, R. D., & Cerniglia, C. E. (2004). Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacylamide gel electrophoresis and de novo sequencing methods. Proteomics, 4, 3899–3908.

    Article  CAS  Google Scholar 

  30. Stingley, R. L., Brezna, B., Khan, A. A., & Cerniglia, C. E. (2004). Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology, 150, 3749–3761.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our lab members for critical review of the manuscript. This work was supported by a project supported by the National Science Foundation for Young Scientists of China (Grant No. 31000069) and the project of Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education (ZS12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YL., Lu, W., Wan, LL. et al. Elucidation of Fluoranthene Degradative Characteristics in a Newly Isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175, 1294–1305 (2015). https://doi.org/10.1007/s12010-014-1347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1347-7

Keywords

Navigation