Silica Nanoparticles Induced Metabolic Stress through EGR1, CCND, and E2F1 Genes in Human Mesenchymal Stem Cells
- 320 Downloads
- 3 Citations
Abstract
The SiO2 synthesized in bulk form, adopting the conventional methods for application in food industry applications, may also contain nano-sized particles. On account of the unique physico-chemical properties, the SiO2 particulates, such as size and shape, cause metabolic toxicity in cells. Poor understanding of the molecular level nanotoxicity resulting from high-volume synthetic SiO2 exposures in humans is a serious issue, since these particles may also contribute to metabolic stress-mediated chronic diseases. In the present study, we examined the structural characteristics of these nano-sized silica particles adopting SEM and dynamic light scattering (DLS) and assessed the alterations in the cell cycle induced by these silica particles in human mesenchymal stem cells (hMSCs) adopting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay, morphological changes in the cells adopting fluorescent microscopy, cell cycle analysis adopting flow cytometry, and the expression of genes linked to cell cycle (i.e., proliferating cell nuclear antigen (PCNA), early growth response protein (EGR1), E2F transcription factor (E2F1), cyclin D1, cyclin C, and cyclin D3) adopting qPCR. The SEM and DLS studies indicated that the commercial grade SiO2-NPs were in the nano-scale range. Alterations in the cytoplasmic organization, nuclear morphology, cell cycle progression, and expression of genes linked to cell cycle-dependent metabolic stress through EGR1, CCND, and E2F1 genes were the primary indicators of metabolic stress. Overall, the results of this study demonstrate that synthetic SiO2 acutely affects hMSC through cell cycle-dependent oxidative stress gene network. The toxicity mechanisms (both acute and chronic) of food grade silica should be investigated in greater depth with special reference to food safety.
Keywords
SiO2 nano-particles Oxidative stress Cell cycle Mesenchymal stem cellsNotes
Acknowledgments
We gratefully acknowledge the financial support from the National Program for Science and Technology, King Saud University, Saudi Arabia (Project code: BIO-981-10).
Conflict of Interest
None declared.
References
- 1.Douroumis, D., Onyesom, I., Maniruzzaman, M., & Mitchell, J. (2013). Critical Review in Biotechnology, 33, 229–245.CrossRefGoogle Scholar
- 2.Barik, T. K., Sahu, B., & Swain, V. (2008). Parasitology Research, 103, 253–258.CrossRefGoogle Scholar
- 3.Tan, W., Wang, K., He, X., Zhao, X. J., Drake, T., Wang, L., & Bagwe, R. P. (2004). Medicinal Research Reviews, 24, 621–638.CrossRefGoogle Scholar
- 4.Wang, H., Du, L. J., Song, Z. M., & Chen, X. X. (2013). Nanomedicine (London, England), 8, 2007–2025.CrossRefGoogle Scholar
- 5.Dekkers, S., Krystek, P., Peters, R. J., Lankveld, D. P., Bokkers, B. G., van Hoeven-Arentzen, P. H., Bouwmeester, H., & Oomen, A. G. (2011). Nanotoxicology, 5, 393–405.CrossRefGoogle Scholar
- 6.Tan, W. M., Hou, N., Pang, S., Zhu, X. F., Li, Z. H., Wen, L. X., & Duan, L. S. (2012). Pest Management Science, 68, 437–443.CrossRefGoogle Scholar
- 7.Athinarayanan, J., Periasamy, V. S., Alsaif, M. A., Al-Warthan, A. A., & Alshatwi, A. A. (2014). Cell Biology and Toxicology, 30, 89–100.CrossRefGoogle Scholar
- 8.Peters, R., Kramer, E., Oomen, A. G., Rivera, Z. E., Oegema, G., Tromp, P. C., Fokkink, R., Rietveld, A., Marvin, H. J., Weigel, S., Peijnenburg, A. A., & Bouwmeester, H. (2012). ACS Nano, 6, 2441–2451.CrossRefGoogle Scholar
- 9.Raghuvanshi, S., Shrivastava, S., Johri, S., & Shukla, S. (2012). Therapeutic associated with occupational exposure to silica. Journal of Trace Elements in Medicine and Biology, 26, 205–209.CrossRefGoogle Scholar
- 10.Dekkers, S., Bouwmeester, H., Bos, P. M., Peters, R. J., Rietveld, A. G., & Oomen, A. G. (2013). Nanotoxicology, 7, 367–377.CrossRefGoogle Scholar
- 11.Becker, H., Herzberg, F., Schulte, A., & Kolossa-Gehring, M. (2011). International Journal of Hygiene and Environmental Health, 214, 231–238.CrossRefGoogle Scholar
- 12.Yang, E. J., & Choi, I. H. (2013). Immune Network, 13, 94–101.CrossRefGoogle Scholar
- 13.Yoshida, T., Yoshioka, Y., Matsuyama, K., Nakazato, Y., Tochigi, S., Hirai, T., Kondoh, S., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S., Nabeshi, H., Yoshikawa, T., & Tsutsumi, Y. (2012). Biochemical and Biophysical Research Communications, 427, 748–752.CrossRefGoogle Scholar
- 14.Napierska, D., Quarck, R., Thomassen, L. C., Lison, D., Martens, J. A., Delcroix, M., Nemery, B., & Hoet, P. H. (2013). Small, 9, 430–438.CrossRefGoogle Scholar
- 15.McCarthy, J., Inkielewicz-Stepniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Chemical Research in Toxicology, 25, 2227–2235.CrossRefGoogle Scholar
- 16.Yang, Y. X., Song, Z. M., Cheng, B., Xiang, K., Chen, X. X., Liu, J. H., Cao, A., Wang, Y., Liu, Y., & Wang, H. (2014). Journal of Applied Toxicology, 34, 424–435.CrossRefGoogle Scholar
- 17.Winter, M., Beer, H. D., Hornung, V., Kramer, U., Schins, R. P., & Forster, I. (2011). Nanotoxicology, 5, 326–340.CrossRefGoogle Scholar
- 18.Liu, X., & Sun, J. (2010). Biomaterials, 31, 8198–8209.CrossRefGoogle Scholar
- 19.Park, E. J., & Park, K. (2009). Toxicology Letters, 184, 18–25.CrossRefGoogle Scholar
- 20.Wang, W., Li, Y., Liu, X., Jin, M., Du, H., Liu, Y., Huang, P., Zhou, X., Yuan, L., & Sun, Z. (2013). International Journal of Nanomedicine, 8, 3533–3541.Google Scholar
- 21.Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B., & Zhuang, Z. (2010). Particle and Fibre Toxicology, 7, 1.CrossRefGoogle Scholar
- 22.Saquib, Q., Al-Khedhairy, A. A., Ahmad, J., Siddiqui, M. A., Dwivedi, S., Khan, S. T., & Musarrat, J. (2013). Toxicology and Applied Pharmacology, 273, 289–297.CrossRefGoogle Scholar
- 23.Hackenberg, S., Scherzed, A., Technau, A., Kessler, M., Froelich, K., Ginzkey, C., Koehler, C., Burghartz, M., Hagen, R., & Kleinsasser, N. (2011). Toxicology in Vitro, 25, 657–663.CrossRefGoogle Scholar
- 24.van Berlo, D., Wessels, A., Boots, A. W., Wilhelmi, V., Scherbart, A. M., Gerloff, K., van Schooten, F. J., Albrecht, C., & Schins, R. P. (2010). Free Radical Biology & Medicine, 49, 1685–1693.CrossRefGoogle Scholar
- 25.Gou, N., Onnis-Hayden, A., & Gu, A. Z. (2010). Environmental Science & Technology, 44, 5964–5970.CrossRefGoogle Scholar
- 26.Saquib, Q., Al-Khedhairy, A. A., Siddiqui, M. A., Abou-Tarboush, F. M., Azam, A., & Musarrat, J. (2012). Toxicology in Vitro, 26, 351–361.CrossRefGoogle Scholar
- 27.Tilton, S. C., Karin, N. J., Tolic, A., Xie, Y., Lai, X., Hamilton, R. F., Waters, K. M., Holian, A., Witzmann, F. A., & Orr, G. (2014). Nanotoxicology, 8, 533–548.CrossRefGoogle Scholar
- 28.Foldbjerg, R., Irving, E. S., Hayashi, Y., Sutherland, D. S., Thorsen, K., Autrup, H., & Beer, C. (2012). Toxicological Sciences, 130, 145–157.CrossRefGoogle Scholar
- 29.Liao, H. Y., Chung, Y. T., Lai, C. H., Wang, S. L., Chiang, H. C., Li, L. A., Tsou, T. C., Li, W. F., Lee, H. L., Wu, W. T., Lin, M. H., Hsu, J. H., Ho, J. J., Chen, C. J., Shih, T. S., Lin, C. C., & Liou, S. H. (2013). Nanotoxicology, 8, 100–110.CrossRefGoogle Scholar
- 30.Andon, F. T., & Fadeel, B. (2013). Accounts of Chemical Research, 46, 733–742.CrossRefGoogle Scholar
- 31.Scanu, M., Mancuso, L., & Cao, G. (2011). Toxicology in Vitro, 25, 1989–1995.CrossRefGoogle Scholar
- 32.Teow, Y., Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2011). Chemical communications (Cambridge), 47, 7025–7038.CrossRefGoogle Scholar
- 33.Stamm, H., Gibson, N., & Anklam, E. (2012). Food Additives and Contaminants Part A, 29, 1175–1182.CrossRefGoogle Scholar
- 34.Morris, V. J. (2011). Trends in Biotechnology, 29, 509–516.CrossRefGoogle Scholar
- 35.Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Environmental Science & Technology, 46, 2242–2250.CrossRefGoogle Scholar
- 36.Uboldi, C., Giudetti, G., Broggi, F., Gilliland, D., Ponti, J., & Rossi, F. (2012). Mutation Research, 745, 11–20.CrossRefGoogle Scholar
- 37.Zhu, J., Liao, L., Zhu, L., Zhang, P., Guo, K., Kong, J., Ji, C., & Liu, B. (2013). Talanta, 107, 408–415.CrossRefGoogle Scholar
- 38.Ahamed, M. (2013). Human & Experimental Toxicology, 32, 186–195.CrossRefGoogle Scholar
- 39.Ahmad, J., Ahamed, M., Akhtar, M. J., Alrokayan, S. A., Siddiqui, M. A., Musarrat, J., & Al-Khedhairy, A. A. (2012). Toxicology and Applied Pharmacology, 259, 160–168.CrossRefGoogle Scholar
- 40.Akhtar, M. J., Ahamed, M., Kumar, S., Siddiqui, H., Patil, G., Ashquin, M., & Ahmad, I. (2010). Toxicology, 276, 95–102.CrossRefGoogle Scholar
- 41.Mu, Q., Hondow, N. S., Krzeminski, L., Brown, A. P., Jeuken, L. J., & Routledge, M. N. (2012). Particle and Fibre Toxicology, 9, 29.CrossRefGoogle Scholar
- 42.Gonzalez, L., Thomassen, L. C., Plas, G., Rabolli, V., Napierska, D., Decordier, I., Roelants, M., Hoet, P. H., Kirschhock, C. E., Martens, J. A., Lison, D., & Kirsch-Volders, M. (2010). Nanotoxicology, 4, 382–395.CrossRefGoogle Scholar
- 43.Gazzano, E., Ghiazza, M., Polimeni, M., Bolis, V., Fenoglio, I., Attanasio, A., Mazzucco, G., Fubini, B., & Ghigo, D. (2012). Toxicological Sciences, 128, 158–170.CrossRefGoogle Scholar
- 44.Chu, Z., Huang, Y., Tao, Q., & Li, Q. (2011). Nanoscale, 3, 3291–3299.CrossRefGoogle Scholar
- 45.Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., Itoh, N., Tsunoda, S., & Tsutsumi, Y. (2011). Particle and Fibre Toxicology, 8, 1.CrossRefGoogle Scholar
- 46.Duan, J., Yu, Y., Li, Y., Zhou, X., Huang, P., & Sun, Z. (2013). PloS One, 8, e62087.CrossRefGoogle Scholar
- 47.Bhattacharya, K., Naha, P. C., Naydenova, I., Mintova, S., & Byrne, H. J. (2012). Toxicology Letters, 215, 151–160.CrossRefGoogle Scholar
- 48.Farcal, L. R., Uboldi, C., Mehn, D., Giudetti, G., Nativo, P., Ponti, J., Gilliland, D., Rossi, F., & Bal-Price, A. (2013). Nanotoxicology, 7, 1095–1110.CrossRefGoogle Scholar
- 49.Zhang, Q., Sakamoto, K., & Wagner, K. U. (2014). Molecular and Cellular Endocrinology, 382, 583–592.CrossRefGoogle Scholar
- 50.Stuart, J. R., Kawai, H., Tsai, K. K., Chuang, E. Y., & Yuan, Z. M. (2005). Oncogene, 24, 8085–8092.Google Scholar
- 51.Blanchet, E., Annicotte, J. S., Lagarrigue, S., Aguilar, V., Clape, C., Chavey, C., Fritz, V., Casas, F., Apparailly, F., Auwerx, J., & Fajas, L. (2011). Nature Cell Biology, 13, 1146–1152.CrossRefGoogle Scholar
- 52.Wang, J., Shen, W. H., Jin, Y. J., Brandt-Rauf, P. W., & Yin, Y. (2007). The Journal of Biological Chemistry, 282, 18521–18531.CrossRefGoogle Scholar
- 53.Mu, Q., Nicole, S. H., Krzemiński, L., Andy, P. B., Lars, J. C. J., Michael, N. R. (2012). Part Fibre Toxicol, 9, 2.Google Scholar