Applied Biochemistry and Biotechnology

, Volume 175, Issue 2, pp 1181–1192 | Cite as

Silica Nanoparticles Induced Metabolic Stress through  EGR1, CCND, and E2F1 Genes in Human Mesenchymal Stem Cells

  • Vaiyapuri S. Periasamy
  • Jegan Athinarayanan
  • Mohammad A. Akbarsha
  • Ali A. Alshatwi
Article

Abstract

The SiO2 synthesized in bulk form, adopting the conventional methods for application in food industry applications, may also contain nano-sized particles. On account of the unique physico-chemical properties, the SiO2 particulates, such as size and shape, cause metabolic toxicity in cells. Poor understanding of the molecular level nanotoxicity resulting from high-volume synthetic SiO2 exposures in humans is a serious issue, since these particles may also contribute to metabolic stress-mediated chronic diseases. In the present study, we examined the structural characteristics of these nano-sized silica particles adopting SEM and dynamic light scattering (DLS) and assessed the alterations in the cell cycle induced by these silica particles in human mesenchymal stem cells (hMSCs) adopting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay, morphological changes in the cells adopting fluorescent microscopy, cell cycle analysis adopting flow cytometry, and the expression of genes linked to cell cycle (i.e., proliferating cell nuclear antigen (PCNA), early growth response protein (EGR1), E2F transcription factor (E2F1), cyclin D1, cyclin C, and cyclin D3) adopting qPCR. The SEM and DLS studies indicated that the commercial grade SiO2-NPs were in the nano-scale range. Alterations in the cytoplasmic organization, nuclear morphology, cell cycle progression, and expression of genes linked to cell cycle-dependent metabolic stress through EGR1, CCND, and E2F1 genes were the primary indicators of metabolic stress. Overall, the results of this study demonstrate that synthetic SiO2 acutely affects hMSC through cell cycle-dependent oxidative stress gene network. The toxicity mechanisms (both acute and chronic) of food grade silica should be investigated in greater depth with special reference to food safety.

Keywords

SiO2 nano-particles Oxidative stress Cell cycle Mesenchymal stem cells 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the National Program for Science and Technology, King Saud University, Saudi Arabia (Project code: BIO-981-10).

Conflict of Interest

None declared.

References

  1. 1.
    Douroumis, D., Onyesom, I., Maniruzzaman, M., & Mitchell, J. (2013). Critical Review in Biotechnology, 33, 229–245.CrossRefGoogle Scholar
  2. 2.
    Barik, T. K., Sahu, B., & Swain, V. (2008). Parasitology Research, 103, 253–258.CrossRefGoogle Scholar
  3. 3.
    Tan, W., Wang, K., He, X., Zhao, X. J., Drake, T., Wang, L., & Bagwe, R. P. (2004). Medicinal Research Reviews, 24, 621–638.CrossRefGoogle Scholar
  4. 4.
    Wang, H., Du, L. J., Song, Z. M., & Chen, X. X. (2013). Nanomedicine (London, England), 8, 2007–2025.CrossRefGoogle Scholar
  5. 5.
    Dekkers, S., Krystek, P., Peters, R. J., Lankveld, D. P., Bokkers, B. G., van Hoeven-Arentzen, P. H., Bouwmeester, H., & Oomen, A. G. (2011). Nanotoxicology, 5, 393–405.CrossRefGoogle Scholar
  6. 6.
    Tan, W. M., Hou, N., Pang, S., Zhu, X. F., Li, Z. H., Wen, L. X., & Duan, L. S. (2012). Pest Management Science, 68, 437–443.CrossRefGoogle Scholar
  7. 7.
    Athinarayanan, J., Periasamy, V. S., Alsaif, M. A., Al-Warthan, A. A., & Alshatwi, A. A. (2014). Cell Biology and Toxicology, 30, 89–100.CrossRefGoogle Scholar
  8. 8.
    Peters, R., Kramer, E., Oomen, A. G., Rivera, Z. E., Oegema, G., Tromp, P. C., Fokkink, R., Rietveld, A., Marvin, H. J., Weigel, S., Peijnenburg, A. A., & Bouwmeester, H. (2012). ACS Nano, 6, 2441–2451.CrossRefGoogle Scholar
  9. 9.
    Raghuvanshi, S., Shrivastava, S., Johri, S., & Shukla, S. (2012). Therapeutic associated with occupational exposure to silica. Journal of Trace Elements in Medicine and Biology, 26, 205–209.CrossRefGoogle Scholar
  10. 10.
    Dekkers, S., Bouwmeester, H., Bos, P. M., Peters, R. J., Rietveld, A. G., & Oomen, A. G. (2013). Nanotoxicology, 7, 367–377.CrossRefGoogle Scholar
  11. 11.
    Becker, H., Herzberg, F., Schulte, A., & Kolossa-Gehring, M. (2011). International Journal of Hygiene and Environmental Health, 214, 231–238.CrossRefGoogle Scholar
  12. 12.
    Yang, E. J., & Choi, I. H. (2013). Immune Network, 13, 94–101.CrossRefGoogle Scholar
  13. 13.
    Yoshida, T., Yoshioka, Y., Matsuyama, K., Nakazato, Y., Tochigi, S., Hirai, T., Kondoh, S., Nagano, K., Abe, Y., Kamada, H., Tsunoda, S., Nabeshi, H., Yoshikawa, T., & Tsutsumi, Y. (2012). Biochemical and Biophysical Research Communications, 427, 748–752.CrossRefGoogle Scholar
  14. 14.
    Napierska, D., Quarck, R., Thomassen, L. C., Lison, D., Martens, J. A., Delcroix, M., Nemery, B., & Hoet, P. H. (2013). Small, 9, 430–438.CrossRefGoogle Scholar
  15. 15.
    McCarthy, J., Inkielewicz-Stepniak, I., Corbalan, J. J., & Radomski, M. W. (2012). Chemical Research in Toxicology, 25, 2227–2235.CrossRefGoogle Scholar
  16. 16.
    Yang, Y. X., Song, Z. M., Cheng, B., Xiang, K., Chen, X. X., Liu, J. H., Cao, A., Wang, Y., Liu, Y., & Wang, H. (2014). Journal of Applied Toxicology, 34, 424–435.CrossRefGoogle Scholar
  17. 17.
    Winter, M., Beer, H. D., Hornung, V., Kramer, U., Schins, R. P., & Forster, I. (2011). Nanotoxicology, 5, 326–340.CrossRefGoogle Scholar
  18. 18.
    Liu, X., & Sun, J. (2010). Biomaterials, 31, 8198–8209.CrossRefGoogle Scholar
  19. 19.
    Park, E. J., & Park, K. (2009). Toxicology Letters, 184, 18–25.CrossRefGoogle Scholar
  20. 20.
    Wang, W., Li, Y., Liu, X., Jin, M., Du, H., Liu, Y., Huang, P., Zhou, X., Yuan, L., & Sun, Z. (2013). International Journal of Nanomedicine, 8, 3533–3541.Google Scholar
  21. 21.
    Yang, X., Liu, J., He, H., Zhou, L., Gong, C., Wang, X., Yang, L., Yuan, J., Huang, H., He, L., Zhang, B., & Zhuang, Z. (2010). Particle and Fibre Toxicology, 7, 1.CrossRefGoogle Scholar
  22. 22.
    Saquib, Q., Al-Khedhairy, A. A., Ahmad, J., Siddiqui, M. A., Dwivedi, S., Khan, S. T., & Musarrat, J. (2013). Toxicology and Applied Pharmacology, 273, 289–297.CrossRefGoogle Scholar
  23. 23.
    Hackenberg, S., Scherzed, A., Technau, A., Kessler, M., Froelich, K., Ginzkey, C., Koehler, C., Burghartz, M., Hagen, R., & Kleinsasser, N. (2011). Toxicology in Vitro, 25, 657–663.CrossRefGoogle Scholar
  24. 24.
    van Berlo, D., Wessels, A., Boots, A. W., Wilhelmi, V., Scherbart, A. M., Gerloff, K., van Schooten, F. J., Albrecht, C., & Schins, R. P. (2010). Free Radical Biology & Medicine, 49, 1685–1693.CrossRefGoogle Scholar
  25. 25.
    Gou, N., Onnis-Hayden, A., & Gu, A. Z. (2010). Environmental Science & Technology, 44, 5964–5970.CrossRefGoogle Scholar
  26. 26.
    Saquib, Q., Al-Khedhairy, A. A., Siddiqui, M. A., Abou-Tarboush, F. M., Azam, A., & Musarrat, J. (2012). Toxicology in Vitro, 26, 351–361.CrossRefGoogle Scholar
  27. 27.
    Tilton, S. C., Karin, N. J., Tolic, A., Xie, Y., Lai, X., Hamilton, R. F., Waters, K. M., Holian, A., Witzmann, F. A., & Orr, G. (2014). Nanotoxicology, 8, 533–548.CrossRefGoogle Scholar
  28. 28.
    Foldbjerg, R., Irving, E. S., Hayashi, Y., Sutherland, D. S., Thorsen, K., Autrup, H., & Beer, C. (2012). Toxicological Sciences, 130, 145–157.CrossRefGoogle Scholar
  29. 29.
    Liao, H. Y., Chung, Y. T., Lai, C. H., Wang, S. L., Chiang, H. C., Li, L. A., Tsou, T. C., Li, W. F., Lee, H. L., Wu, W. T., Lin, M. H., Hsu, J. H., Ho, J. J., Chen, C. J., Shih, T. S., Lin, C. C., & Liou, S. H. (2013). Nanotoxicology, 8, 100–110.CrossRefGoogle Scholar
  30. 30.
    Andon, F. T., & Fadeel, B. (2013). Accounts of Chemical Research, 46, 733–742.CrossRefGoogle Scholar
  31. 31.
    Scanu, M., Mancuso, L., & Cao, G. (2011). Toxicology in Vitro, 25, 1989–1995.CrossRefGoogle Scholar
  32. 32.
    Teow, Y., Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2011). Chemical communications (Cambridge), 47, 7025–7038.CrossRefGoogle Scholar
  33. 33.
    Stamm, H., Gibson, N., & Anklam, E. (2012). Food Additives and Contaminants Part A, 29, 1175–1182.CrossRefGoogle Scholar
  34. 34.
    Morris, V. J. (2011). Trends in Biotechnology, 29, 509–516.CrossRefGoogle Scholar
  35. 35.
    Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Environmental Science & Technology, 46, 2242–2250.CrossRefGoogle Scholar
  36. 36.
    Uboldi, C., Giudetti, G., Broggi, F., Gilliland, D., Ponti, J., & Rossi, F. (2012). Mutation Research, 745, 11–20.CrossRefGoogle Scholar
  37. 37.
    Zhu, J., Liao, L., Zhu, L., Zhang, P., Guo, K., Kong, J., Ji, C., & Liu, B. (2013). Talanta, 107, 408–415.CrossRefGoogle Scholar
  38. 38.
    Ahamed, M. (2013). Human & Experimental Toxicology, 32, 186–195.CrossRefGoogle Scholar
  39. 39.
    Ahmad, J., Ahamed, M., Akhtar, M. J., Alrokayan, S. A., Siddiqui, M. A., Musarrat, J., & Al-Khedhairy, A. A. (2012). Toxicology and Applied Pharmacology, 259, 160–168.CrossRefGoogle Scholar
  40. 40.
    Akhtar, M. J., Ahamed, M., Kumar, S., Siddiqui, H., Patil, G., Ashquin, M., & Ahmad, I. (2010). Toxicology, 276, 95–102.CrossRefGoogle Scholar
  41. 41.
    Mu, Q., Hondow, N. S., Krzeminski, L., Brown, A. P., Jeuken, L. J., & Routledge, M. N. (2012). Particle and Fibre Toxicology, 9, 29.CrossRefGoogle Scholar
  42. 42.
    Gonzalez, L., Thomassen, L. C., Plas, G., Rabolli, V., Napierska, D., Decordier, I., Roelants, M., Hoet, P. H., Kirschhock, C. E., Martens, J. A., Lison, D., & Kirsch-Volders, M. (2010). Nanotoxicology, 4, 382–395.CrossRefGoogle Scholar
  43. 43.
    Gazzano, E., Ghiazza, M., Polimeni, M., Bolis, V., Fenoglio, I., Attanasio, A., Mazzucco, G., Fubini, B., & Ghigo, D. (2012). Toxicological Sciences, 128, 158–170.CrossRefGoogle Scholar
  44. 44.
    Chu, Z., Huang, Y., Tao, Q., & Li, Q. (2011). Nanoscale, 3, 3291–3299.CrossRefGoogle Scholar
  45. 45.
    Nabeshi, H., Yoshikawa, T., Matsuyama, K., Nakazato, Y., Tochigi, S., Kondoh, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., Yoshioka, Y., Kamada, H., Itoh, N., Tsunoda, S., & Tsutsumi, Y. (2011). Particle and Fibre Toxicology, 8, 1.CrossRefGoogle Scholar
  46. 46.
    Duan, J., Yu, Y., Li, Y., Zhou, X., Huang, P., & Sun, Z. (2013). PloS One, 8, e62087.CrossRefGoogle Scholar
  47. 47.
    Bhattacharya, K., Naha, P. C., Naydenova, I., Mintova, S., & Byrne, H. J. (2012). Toxicology Letters, 215, 151–160.CrossRefGoogle Scholar
  48. 48.
    Farcal, L. R., Uboldi, C., Mehn, D., Giudetti, G., Nativo, P., Ponti, J., Gilliland, D., Rossi, F., & Bal-Price, A. (2013). Nanotoxicology, 7, 1095–1110.CrossRefGoogle Scholar
  49. 49.
    Zhang, Q., Sakamoto, K., & Wagner, K. U. (2014). Molecular and Cellular Endocrinology, 382, 583–592.CrossRefGoogle Scholar
  50. 50.
    Stuart, J. R., Kawai, H., Tsai, K. K., Chuang, E. Y., & Yuan, Z. M. (2005). Oncogene, 24, 8085–8092.Google Scholar
  51. 51.
    Blanchet, E., Annicotte, J. S., Lagarrigue, S., Aguilar, V., Clape, C., Chavey, C., Fritz, V., Casas, F., Apparailly, F., Auwerx, J., & Fajas, L. (2011). Nature Cell Biology, 13, 1146–1152.CrossRefGoogle Scholar
  52. 52.
    Wang, J., Shen, W. H., Jin, Y. J., Brandt-Rauf, P. W., & Yin, Y. (2007). The Journal of Biological Chemistry, 282, 18521–18531.CrossRefGoogle Scholar
  53. 53.
    Mu, Q., Nicole, S. H., Krzemiński, L., Andy, P. B., Lars, J. C. J., Michael, N. R. (2012). Part Fibre Toxicol, 9, 2.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vaiyapuri S. Periasamy
    • 1
  • Jegan Athinarayanan
    • 1
  • Mohammad A. Akbarsha
    • 1
    • 2
  • Ali A. Alshatwi
    • 1
    • 3
  1. 1.Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and NutritionCollege of Food Science and AgricultureRiyadhSaudi Arabia
  2. 2.Mahatma Gandhi-Doerenkamp CenterBharathidasan UniversityTiruchirappalliIndia
  3. 3.Department of Food Science and Nutrition, College of Food Sciences and AgricultureKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations