Applied Biochemistry and Biotechnology

, Volume 175, Issue 2, pp 677–686 | Cite as

Effect of the Antifreeze Protein from the Arctic Yeast Leucosporidium sp. AY30 on Cryopreservation of the Marine Diatom Phaeodactylum tricornutum

  • Hye Yeon Koh
  • Jun Hyuck Lee
  • Se Jong Han
  • Hyun Park
  • Sung Gu Lee
Article

Abstract

Antifreeze proteins are a group of proteins that allow organisms to survive in subzero environments. These proteins possess thermal hysteresis and ice recrystallization inhibition activities. In the present study, we demonstrated the efficiency of a recombinant antifreeze protein from the Arctic yeast Leucosporidium sp. AY30, LeIBP, in cryopreservation of the marine diatom Phaeodactylum tricornutum, which is one of the classical model diatoms and has most widely been studied with regard to its ecology, physiology, biochemistry, and molecular biology. P. tricornutum cells were frozen by either a fast or two-step freezing method in freezing medium containing 10 % dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol, respectively, with or without LeIBP supplement. When cells were frozen using the two-step freezing method, cell survival was significantly increased and statistically the same as that of unfrozen native cells in the presence of 0.1 mg/ml LeIBP in 10 % propylene glycol or 10 % ethylene glycol at day 11 of post-thaw culture. In the presence of LeIBP, the concentration of chlorophyll a was dramatically increased to 14-, 48-, 1.6-, and 8.8-fold when cells were frozen in freezing medium containing dimethyl sulfoxide (DMSO), glycerol, propylene glycol (PG), and ethylene glycol (EG), respectively. Scanning electron microscopy observations demonstrated that the cells were also successfully preserved and epitheca or hypotheca were not deformed. These results demonstrate that LeIBP was successfully applied to improve cryopreservation of the marine diatom P. tricornutum.

Keywords

Antifreeze protein LeIBP Marine diatom Phaeodactylum tricornutum Cryopreservation 

Notes

Acknowledgments

This work was supported by a grant from the Korea Polar Research Institute (PE14070).

References

  1. 1.
    Smetacek, V. (1999). Protist, 150, 25–32.CrossRefGoogle Scholar
  2. 2.
    Depauw, F. A., Rogato, A., Ribera d’Alcala, M., & Falciatore, A. (2012). Journal of Experimental Botany, 63, 1575–1591.CrossRefGoogle Scholar
  3. 3.
    De Martino, A., Meichenin, A., Shi, J., Pan, K., & Bowler, C. (2007). Journal of Phycology, 43, 992–1009.CrossRefGoogle Scholar
  4. 4.
    Howland, R. J., Tappin, A. D., Uncles, R. J., Plummer, D. H., & Bloomer, N. J. (2000). Science of the Total Environment, 251–252, 125–138.CrossRefGoogle Scholar
  5. 5.
    Borowitzka, M. A., Chiappino, M. L., & Volcani, B. E. (1977). Journal of Phycology, 13, 162–170.Google Scholar
  6. 6.
    Borowitzka, M. A., & Volcani, B. E. (1978). Journal of Phycology, 14, 10–21.CrossRefGoogle Scholar
  7. 7.
    Wilson, D. P. (1946). Journal of the Marine Biological Association of the UK, 26, 235–270.CrossRefGoogle Scholar
  8. 8.
    De Martino, A., Bartual, A., Willis, A., Meichenin, A., Villazan, B., Maheswari, U., & Bowler, C. (2011). Protist, 162, 462–481.CrossRefGoogle Scholar
  9. 9.
    Day, J. G., & DeVille, M. M. (1995). Methods in Molecular Biology, 38, 81–89.Google Scholar
  10. 10.
    Day, J. G., Fleck, R. A., & Benson, E. E. (2000). Journal of Applied Phycology, 12, 369–377.CrossRefGoogle Scholar
  11. 11.
    Round, F. E., Crawford, R. M. & Mann, D. G. (1990). The diatoms: biology and morphology of the genera. 1 ed. Cambridge University Press.Google Scholar
  12. 12.
    Day, J. G., & Brand, J. J. (2005). In R. A. Anderson (Ed.), Algal culturing techniques (pp. 165–187). New York: Academic Press.Google Scholar
  13. 13.
    Day, J. G. (2007). In J. G. Day & G. N. Stacey (Eds.), Cryopreservation and freeze-drying protocols (pp. 141–151). Totowa: Humana Press.CrossRefGoogle Scholar
  14. 14.
    Lee, J. J., & Soldo, A. T. (1992). Protocols in protozoology (ed). Lawrence, Kansas: Wiley-Blackwell.Google Scholar
  15. 15.
    Morris, G. J. (1978). British Phycological Journal, 13, 15–24.CrossRefGoogle Scholar
  16. 16.
    Bodas, K. C., Diller, K. R., & Brand, J. J. (1995). Cryo Letters, 16, 267–274.Google Scholar
  17. 17.
    Day, J. G., Benson, E. E., Harding, K., Knowles, B., Idowu, M., Bremner, D., Santos, L., Santos, F., Friedl, T., Lorenz, M., Lukesova, A., Elster, J., Lukavsky, J., Herdman, M., Rippka, R., & Hall, T. (2005). Cryo Letters, 26, 231–238.Google Scholar
  18. 18.
    Hubálek, Z. (2003). Cryobiology, 46, 205–229.CrossRefGoogle Scholar
  19. 19.
    Franks, F. (1985). Biophysics and biochemistry at low temperatures (ed). New York: Cambridge University Press.Google Scholar
  20. 20.
    Taylor, R., & Fletcher, R. (1999). Journal of Applied Phycology, 10, 481–501.CrossRefGoogle Scholar
  21. 21.
    Fuller, B. J. (2004). Cryo Letters, 25, 375–388.Google Scholar
  22. 22.
    Adler, S., Pellizzer, C., Paparella, M., Hartung, T., & Bremer, S. (2006). Toxicology in Vitro, 20, 265–271.CrossRefGoogle Scholar
  23. 23.
    Iwatani, M., Ikegami, K., Kremenska, Y., Hattori, N., Tanaka, S., Yagi, S., & Shiota, K. (2006). Stem Cells, 24, 2549–2556.CrossRefGoogle Scholar
  24. 24.
    Thaler, R., Spitzer, S., Karlic, H., Klaushofer, K., & Varga, F. (2012). Epigenetics, 7, 635–651.CrossRefGoogle Scholar
  25. 25.
    DeVries, A. L., & Wohlschlag, D. E. (1969). Science, 163, 1073–1075.CrossRefGoogle Scholar
  26. 26.
    Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang, S. H., & Kim, H. J. (2010). Cryobiology, 60, 222–228.CrossRefGoogle Scholar
  27. 27.
    Raymond, J. A., Fritsen, C., & Shen, K. (2007). FEMS Microbiology Ecology, 61, 214–221.CrossRefGoogle Scholar
  28. 28.
    Atici, O., & Nalbantoglu, B. (2003). Phytochemistry, 64, 1187–1196.CrossRefGoogle Scholar
  29. 29.
    Duman, J. G., & Olsen, T. M. (1993). Cryobiology, 30, 322–328.CrossRefGoogle Scholar
  30. 30.
    Gilbert, J. A., Davies, P. L., & Laybourn-Parry, J. (2005). FEMS Microbiology Letters, 245, 67–72.CrossRefGoogle Scholar
  31. 31.
    Graether, S. P., & Sykes, B. D. (2004). European Journal of Biochemistry, 271, 3285–3296.CrossRefGoogle Scholar
  32. 32.
    Yeh, Y., & Feeney, R. E. (1996). Chemical Reviews, 96, 601–618.CrossRefGoogle Scholar
  33. 33.
    Chao, H., Davies, P. L., & Carpenter, J. F. (1996). Journal of Experimental Biology, 199, 2071–2076.Google Scholar
  34. 34.
    Kang, J. S., & Raymond, J. A. (2004). Cryo Letters, 25, 307–310.Google Scholar
  35. 35.
    Lee, S. G., Koh, H. Y., Lee, J. H., Kang, S. H., & Kim, H. J. (2012). Applied Biochemistry and Biotechnology, 167, 824–834.CrossRefGoogle Scholar
  36. 36.
    Arav, A., Rubinsky, B., Seren, E., Roche, J. F., & Boland, M. P. (1994). Theriogenology, 41, 107–112.CrossRefGoogle Scholar
  37. 37.
    Koushafar, H., & Rubinsky, B. (1997). Urology, 49, 421–425.CrossRefGoogle Scholar
  38. 38.
    Matsumoto, S., Matsusita, M., Morita, T., Kamachi, H., Tsukiyama, S., Furukawa, Y., Koshida, S., Tachibana, Y., Nishimura, S., & Todo, S. (2006). Cryobiology, 52, 90–98.CrossRefGoogle Scholar
  39. 39.
    Payne, S. R., Oliver, J. E., & Upreti, G. C. (1994). Cryobiology, 31, 180–184.CrossRefGoogle Scholar
  40. 40.
    Lee, J. H., Lee, S. G., Do, H., Park, J. C., Kim, E., Choe, Y. H., Han, S. J., & Kim, H. J. (2013). Applied Biochemistry and Biotechnology, 97, 3383–3393.Google Scholar
  41. 41.
    Guillard, R. R. L. (1975). In W. L. Smith & M. H. Chanley (Eds.), Culture of marine invertebrate animals (pp. 29–60). New York: Springer.CrossRefGoogle Scholar
  42. 42.
    Park, K. S., Lee, J. H., Park, S. I., Do, H., Kim, E. J., Kang, S. H., & Kim, H. J. (2012). Cryobiology, 64, 286–296.CrossRefGoogle Scholar
  43. 43.
    Welschmeyer, N. A. (1994). Limnology and Oceanography, 39, 1985–1992.CrossRefGoogle Scholar
  44. 44.
    Mitbavkar, S., & Anil, A. C. (2006). Cryobiology, 53, 143–147.CrossRefGoogle Scholar
  45. 45.
    Polge, C., Smith, A. U., & Parkes, A. S. (1949). Nature, 164, 666.CrossRefGoogle Scholar
  46. 46.
    Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A., & McLellan, M. R. (1997). Journal of Applied Phycology, 9, 121–127.CrossRefGoogle Scholar
  47. 47.
    Kim, H. J. (2011). Ocean and Polar Research, 33, 303–308.CrossRefGoogle Scholar
  48. 48.
    Tanniou, A., Turpin, V., & Lebeau, T. (2012). Cryobiology, 65, 45–50.CrossRefGoogle Scholar
  49. 49.
    McGrath, M. S., Daggett, P. M., & Dilworth, S. (1978). Journal of Phycology, 14, 521–525.CrossRefGoogle Scholar
  50. 50.
    Carpenter, J. F., & Hansen, T. N. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 8953–8957.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hye Yeon Koh
    • 1
    • 3
  • Jun Hyuck Lee
    • 1
    • 2
  • Se Jong Han
    • 1
    • 2
  • Hyun Park
    • 1
    • 2
  • Sung Gu Lee
    • 1
    • 2
  1. 1.Division of Polar Life SciencesKorea Polar Research InstituteIncheonSouth Korea
  2. 2.Department of Polar SciencesUniversity of Science and TechnologyIncheonSouth Korea
  3. 3.Department of Applied Marine Biotechnology and EngineeringGangneung-Wonju National UniversityGangneungSouth Korea

Personalised recommendations