Advertisement

Applied Biochemistry and Biotechnology

, Volume 175, Issue 2, pp 1080–1091 | Cite as

Life Cycle Assessment of Bioethanol Production from Woodchips with Modifications in the Pretreatment Process

  • Jalil Shadbahr
  • Yan Zhang
  • Faisal KhanEmail author
Article

Abstract

Pretreatment as a crucial step in the process of ethanol production has significant influences on the process efficiency and on the environmental performance of the bioethanol production from lignocellulosic biomass. In present life cycle analysis (LCA) study, two cases for pretreatment of woodchips were considered as the focal point of the ethanol plant. One was assumed as base scenario whereas the second is the proposed alternative by implementation of modifications on the base design. In the first stage, LCA results of pretreatment unit showed lower environmental impacts in respiratory inorganics and land use than in new scenario, while the base scenario revealed better performance in fossil fuels. The results of the second stage of LCA study demonstrated improvement in proposed design in most categories of environmental impacts such as 18.5 % in land use as well as 17 % improvement in ecosystem quality.

Keywords

Bioethanol Life cycle assessment Lignocellulosic biomass Pretreatment Environmental impacts 

Notes

Acknowledgments

The authors thankfully acknowledge the financial support provided by the Natural Science and Engineering Research Council (NSERC), RDC, ACOA and Vale Research Chair program.

References

  1. 1.
    Broder, J. D., Harris, R. A., & Ranney, J. T. (2001). Using MSW and industrial residues as ethanol feedstocks. Biocycle, 42, 23–26.Google Scholar
  2. 2.
     Luo, L., van der Voet, E., & Huppes, G. (2009). Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renewable and Sustainable Energy Reviews, 13, 1613–1619.Google Scholar
  3. 3.
    Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2007). N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 7, 11191–11205.Google Scholar
  4. 4.
    Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science, 319, 1238–1240.Google Scholar
  5. 5.
    Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319, 1235–1238.Google Scholar
  6. 6.
    Zheng, Y., Zhongli, P., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol. International Journal of Agricultural and Biological Engineering, 2, 51–68.Google Scholar
  7. 7.
     Mu, D., Seager, T., Rao, P. S., & Zhao, F. (2010). Comparative life cycle assessment of lignocellulosic ethanol. Environmental Management, 46, 565–578.Google Scholar
  8. 8.
    Wingren, A., Galbe, M., Roslander, C., Rudolf, A., & Zacchi, G. (2005). Effect of reduction in yeast and enzyme concentrations in a simultaneous saccharification and fermentation based bioethanol process. Applied Biochemistry and Biotechnology, 122, 485–499.Google Scholar
  9. 9.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.Google Scholar
  10. 10.
    Mosier, N., Wyman, C. E., Dale, B. D., Elander, R. T., Lee, Y. Y., Holtzapple, M., & Ladisch, C. M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.Google Scholar
  11. 11.
    Conde-Mejia, C., Jimenez-Gutierrez, A., & El-Halwagi, M. (2012). A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90, 189–202.Google Scholar
  12. 12.
    Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Recent advances in production of bioethanol from lignocellulosic biomass. Chemical Engineering Technology, 32, 517–526.Google Scholar
  13. 13.
    Davis, S. C., Anderson-Teixeira, K. J., & DeLucia, E. H. (2009). Life-cycle analysis and the ecology of biofuels. Trends in Plant Science, 14, 140–146.Google Scholar
  14. 14.
    Gonzalez-Garcia, S., Moreira, M. T., & Feijoo, G. (2010). Comparative environmental performance of lignocellulosic ethanol from different feedstocks. Renewable and Sustainable Energy Reviews, 14, 2077–2085.Google Scholar
  15. 15.
    Von Blottnitz, H., & Curran, M. A. (2007). A review of assessments conducted on bioethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production, 15, 607–619.Google Scholar
  16. 16.
    Hedegaard, K., Thyo, K. A., & Wenzel, H. (2008). Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability. Environmental Science Technology, 42, 7992–7999.Google Scholar
  17. 17.
    Borrion, A. L., McManus, M. C., & Hammond, G. P. (2012). Environmental life cycle assessment of lignocellulosic conversion to ethanol: a review. Renewable and Sustainable Energy Reviews, 16, 4638–4650.Google Scholar
  18. 18.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., & Galvez, A. (1999). NREL/TP-580-26157. Golden: Colorado National Laboratory of the U.S. Department of Energy. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios..Google Scholar
  19. 19.
    Tian, S., Zhu, W., Gleisner, R., Pan, X. J., & Zhu, J. Y. (2011). Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnology Progress, 27, 419–427.Google Scholar
  20. 20.
    Zhu, J. Y., Pan, X. J., Wang, G. S., & Gleisner, R. (2009). Sulfite pretreatment for robust enzymatic saccharification of spruce and red pine. Bioresource Technology, 100, 2411–2418.Google Scholar
  21. 21.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.Google Scholar
  22. 22.
    Zhu, J. Y., & Pan, X. J. (2010). Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technology, 101, 4992–5002.Google Scholar
  23. 23.
    Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R., Lee, Y. Y., Mitchinson, C., & Saddler, J. N. (2009). Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnology Progress, 25, 333–339.Google Scholar
  24. 24.
    Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A., Schoen, P., Lukas, J., Olthof, B., Worley, M., Sexton, D., & Dudgeon, D. (2011). NREL/TP-5100-47764. Golden: Colorado National Laboratory of the U.S. Department of Energy. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover.Google Scholar
  25. 25.
    Goedkoop, M., Schryver, A.D., Oele, M., Durksz, S., & Roest, D.D. (2010). Introduction to LCA with SimaPro 7. PRé Consultants.Google Scholar
  26. 26.
    Goedkoop, M., Schryver, A.D., Oele M., Roest, D.D., Vieira, M., & Durksz, S. (2010). SimaPro 7 Tutorial. PRé ConsultantsGoogle Scholar
  27. 27.
    Frischknecht, R., Jungbluth, N., Althaus, H. J., Doka, G., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., Spielmann, M., & Wernet, G. (2007). Overview and methodology (ecoinvent report No. 1). Dübendorf: Swiss Centre for Life Cycle Inventories.Google Scholar
  28. 28.
     Goedkoop, M., Oele, M., Schryver, A. D., & Vieira, M. (2008). SimaPro database manual methods library. the Netherlands: PRé Consultants.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Process Engineering, Faculty of Engineering and Applied ScienceMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations