Skip to main content
Log in

In situ Demonstration and Characteristic Analysis of the Protease Components from Marine Bacteria Using Substrate Immersing Zymography

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Zymography is a widely used technique for the study of proteolytic activities on the basis of protein substrate degradation. In this study, substrate immersing zymography was used in analyzing proteolysis of extracellular proteases. Instead of being added directly into a sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) gel, the substrates were added into the immersing solution after electrophoresis. Substrate immersing zymography could accurately determine the molecular weight of trypsin, and band intensities were linearly related to the amount of protease. The diversity of extracellular proteases produced by different marine bacteria was analyzed by substrate immersing zymography, and large variations of proteolysis were evidenced. The proteolytic activity of Pseudoalteromonas strains was more complicated than that of other strains. Five Pseudoalteromonas strains and five Vibrio strains were further analyzed by substrate immersing zymography with different substrates (casein and gelatin), and multiple caseinolytic and gelatinolytic profiles were detected. The extracellular proteolytic profiles of Pseudoalteromonas strains exhibited a large intraspecific variation. Molecular weight (Mw) of the main protease secreted by Vibrio was 35 kDa. Additionally, the time-related change trends of the activities of extracellular proteases produced by Pseudoalteromonas sp. SJN2 were analyzed by substrate immersing zymography. These results implied the potential application of substrate immersing zymography for the analysis of the diversity of bacterial extracellular proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barrett, A. J., Rawlings, N. D., & Woessner, J. F. (2003). The Handbook of proteolytic enzymes 2nd ed[M]. Academic.

  2. Neurath, H. (1989). Proteolytic enzymes: a practical approach. 1–13.

  3. Hunter, E. M., Mills, H. J., & Kostka, J. E. (2006). Applied and Environmental Microbiology, 72, 5689–5701.

    Article  CAS  Google Scholar 

  4. van Dijl, J. M., & Hecker, M. (2013). Microbial Cell Factories, 12, 3.

    Article  Google Scholar 

  5. Zacaria, J., Delamare, A. P. L., Costa, S. O. P., & Echeverrigaray, S. (2010). Journal of Applied Microbiology, 109, 212–219.

    CAS  Google Scholar 

  6. Gross, J., & Lapiere, C. M. (1962). Proceedings of the National Academy of Sciences of the United States of America, 48, 1014

  7. Heussen, C., & Dowdle, E. B. (1980). Analytical Biochemistry, 102, 196–202.

    Article  CAS  Google Scholar 

  8. Rossano, R., Larocca, M., & Riccio, P. (2011). Journal of Plant Physiology, 168, 1517–1525.

    Article  CAS  Google Scholar 

  9. Hattori, S., Fujisaki, H., Kiriyama, T., Yokoyama, T., & Irie, S. (2002). Analytical Biochemistry, 301, 27–34.

    Article  CAS  Google Scholar 

  10. Choi, N. S., Kim, B. H., Park, C. S., Han, Y. J., Lee, H. W., Choi, J. H., Lee, S. G., & Song, J. J. (2009). Analytical Biochemistry, 386, 121–122.

    Article  CAS  Google Scholar 

  11. Kaberdin, V. R., & McDowall, K. J. (2003). Genome Research, 13, 1961–1965.

    CAS  Google Scholar 

  12. Vandooren, J., Geurts, N., Martens, E., den Steen, P. E. V., & Opdenakker, G. (2013). Nature Methods, 10, 211–220.

    Article  CAS  Google Scholar 

  13. Dodia, M. S., Rawal, C. M., Bhimani, H. G., Joshi, R. H., Khare, S. K., & Singh, S. P. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 121–131.

    Article  CAS  Google Scholar 

  14. Wilder, C. L., Park, K. Y., Keegan, P. M., & Platt, M. O. (2011). Archives of Biochemistry and Biophysics, 516, 52–57.

    Article  CAS  Google Scholar 

  15. Hummel, K. M., Penheiter, A. R., Gathman, A. C., & Lilly, W. W. (1996). Analytical Biochemistry, 233, 140–142.

    Article  CAS  Google Scholar 

  16. Pan, D., Hill, A. P., Kashou, A., Wilson, K. A., & Tan-Wilson, A. (2011). Analytical Biochemistry, 411, 277–283.

    Article  CAS  Google Scholar 

  17. He, H. L., Chen, X. L., Li, J. W., & Zhang, Y. Z. (2004). Food Chemistry, 84, 307–311.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Massaoud, M. K., Marokházi, J., & Fodor, A. (2010). Applied and Environmental Microbiology, 76, 6901–6909.

    Article  CAS  Google Scholar 

  21. Lantz, M. S., & Ciborowski, P. (1994). Methods in Enzymology, 235, 563–594.

    Article  CAS  Google Scholar 

  22. He, H. L., Guo, J., Chen, X. L., Xie, B. B., Zhang, X. Y., Yu, Y., Chen, B., Zhou, B. C., & Zhang, Y. Z. (2012). PLoS ONE, 7, e35442.

    Article  CAS  Google Scholar 

  23. Zhang, X. M., Liu, N., Yang, F., Li, J. H., Wang, L. S., Chen, G. J., & Gao, P. J. (2012). Electrophoresis, 33, 280–287.

    Article  Google Scholar 

  24. Duchesne, L. G. M., Lam, J. S., MacDonald, L. A., Whitfield, C., & Kropinski, A. M. (1988). Current Microbiology, 16, 191–194.

    Article  CAS  Google Scholar 

  25. Schwarz, W. H., Bronnenmeier, K., Gräbnitz, F., & Staudenbauer, W. L. (1987). Analytical Biochemistry, 164, 72–77.

    Article  CAS  Google Scholar 

  26. Zhou, M. Y., Chen, X. L., Zhao, H. L., Dang, H. Y., Luan, X. W., Zhang, X. Y., He, H. L., Zhou, B. C., & Zhang, Y. Z. (2009). Microbial Ecology, 58, 582–590.

    Article  Google Scholar 

  27. Wang, Y., Nakajima, A., Hosokawa, K., Soliev, A. B., Osaka, I., Arakawa, R., & Enomoto, K. (2012). Bioscience Biotechnology and Biochemistry, 76, 1229–1232.

    CAS  Google Scholar 

  28. Kupai, K., Szucs, G., Cseh, S., Hajdu, I., Csonka, C., Csont, T., & Ferdinandy, P. (2010). Pharmacol Toxicol Methods, 61, 205–209.

    Article  CAS  Google Scholar 

  29. Thuy, D. T. B., & Bose, S. K. (2011). International Journal of Biology, 3, 101–110.

    CAS  Google Scholar 

  30. Sakai, D. K. (1985). Applied and Environmental Microbiology, 50, 1031–1037.

    CAS  Google Scholar 

  31. Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M. L., Artini, M., & Selan, L. (2013). Research in Microbiology, 164, 450–456.

    Article  CAS  Google Scholar 

  32. Shinoda, S., & Miyoshi, S. (2011). Biocontrol Science, 16, 1–11.

    Article  CAS  Google Scholar 

  33. Kim, C. M., Kang, S. M., Jeon, H. J., & Shin, S. H. (2007). Journal of Microbiological Methods, 70, 96–102.

    Article  CAS  Google Scholar 

  34. Cera, E. D. (2009). IUBMB Life, 61, 510–515.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (31070061, 31370104), Hunan Provincial Natural Science Foundation of China (13JJ9001), and National Sparking Plan Project (2013GA770009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaiLun He or Hao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yang, X., Huang, J. et al. In situ Demonstration and Characteristic Analysis of the Protease Components from Marine Bacteria Using Substrate Immersing Zymography. Appl Biochem Biotechnol 175, 489–501 (2015). https://doi.org/10.1007/s12010-014-1287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1287-2

Keywords

Navigation