Applied Biochemistry and Biotechnology

, Volume 174, Issue 8, pp 2864–2874 | Cite as

Purification and Characterization of Recombinant Cel7A from Maize Seed

  • Nathan C. Hood
  • Kendall R. Hood
  • Susan L. Woodard
  • Shivakumar P. Devaiah
  • Tina Jeoh
  • Lisa Wilken
  • Zivko Nikolov
  • Erin Egelkrout
  • John A. Howard
  • Elizabeth E. HoodEmail author


The corn grain biofactory was used to produce Cel7A, an exo-cellulase (cellobiohydrolase I) from Hypocrea jecorina. The enzymatic activity on small molecule substrates was equivalent to its fungal counterpart. The corn grain-derived enzyme is glycosylated and 6 kDa smaller than the native fungal protein, likely due to more sugars added in the glycosylation of the fungal enzyme. Our data suggest that corn seed-derived cellobiohydrolase (CBH) I performs as well as or better than its fungal counterpart in releasing sugars from complex substrates such as pre-treated corn stover or wood. This recombinant protein product can enter and expand current reagent enzyme markets as well as create new markets in textile or pulp processing. The purified protein is now available commercially.


Cel7A Recombinant protein Cellobiohydrolase I Protein purification Cellulase Biomass conversion 



This study was supported by a Phase 1 Small Business Innovation Research Grant from the National Institute for Food and Agriculture (ARKW-2011-00108).


  1. 1.
    Schulein, M. (2000). Biochimica et Biophysica Acta, 1543, 239–252.CrossRefGoogle Scholar
  2. 2.
    Tomme, P., Warren, R. A., & Gilkes, N. R. (1995). Advances in Microbial Physiology, 37, 1–81.CrossRefGoogle Scholar
  3. 3.
    Hood, E. E., Love, R., Lane, J., Bray, J., Clough, R., Pappu, K., Drees, C., Hood, K. R., Yoon, S., Ahmad, A., & Howard, J. A. (2007). Plant Biotechnology Journal, 5, 709–719.CrossRefGoogle Scholar
  4. 4.
    Hood, E. E., Devaiah, S. P., Fake, G., Egelkrout, E., Teoh, K., Requesens, D. V., Hayden, C., Hood, K. R., Pappu, K. M., Carroll, J., & Howard, J. A. (2012). Plant Biotechnology Journal, 10, 20–30.CrossRefGoogle Scholar
  5. 5.
    Hood, E. E., Bailey, M. R., Beifuss, K., Magallanes-Lundback, M., Horn, M. E., Callaway, E., Drees, C., Delaney, D. E., Clough, R., & Howard, J. A. (2003). Plant Biotechnology Journal, 1, 129–140.CrossRefGoogle Scholar
  6. 6.
    Hood, E. E., & Woodard, S. (2002). Industrial proteins produced from plants. In E. E. Hood & J. A. Howard (Eds.), Plants as factories for protein production (pp. 119–135). The Netherlands: Kluwer Academic Publishers Dordrecht.CrossRefGoogle Scholar
  7. 7.
    Woodard, S. L., Mayor, J. M., Bailey, M. R., Barker, D. K., Love, R. T., Lane, J. R., Delaney, D. E., McComas-Wagner, J. M., Mallubhotla, H. D., Hood, E. E., Dangott, L. J., Tichy, S. E., & Howard, J. A. (2003). Biotechnology and Applied Biochemistry, 38, 123–130.CrossRefGoogle Scholar
  8. 8.
    Ziegler, M., Thomas, S. R., & Danna, K. (2000). Molecular Breeding, 6, 37–46.CrossRefGoogle Scholar
  9. 9.
    Ziegelhoffer, T., Will, J., & Austin-Phillips, S. (1999). Molecular Breeding, 5, 309–318.CrossRefGoogle Scholar
  10. 10.
    Dai, Z., Hooker, B., Anderson, D. B., & Thomas, S. R. (2000). Transgenic Research, 9, 43–54.CrossRefGoogle Scholar
  11. 11.
    Howard, J., Nikolov, Z., & Hood, E. (2011). Enzyme production systems for biomass conversion. In E. Hood, P. Nelson, & R. Powell (Eds.), Plant biomass conversion (pp. 227–253). Ames: Wiley-Blackwell.CrossRefGoogle Scholar
  12. 12.
    Walpole, G. S. (1914). CCXXXIII. Journal of the Chemical Society, Transactions, 105, 2501–2521.CrossRefGoogle Scholar
  13. 13.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  14. 14.
    Buchanan, B. B., Gruissem, W. and Jones, R. L. (2002) Biochemistry & Molecular Biology of Plants. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  15. 15.
    Jeoh, T., Michener, W., Himmel, M. E., Decker, S. R., & Adney, W. S. (2008). Biotechnology for Biofuels, 1, 10–22.CrossRefGoogle Scholar
  16. 16.
    Adney, W., S., Chou, Y.-C., Decker Stephen, R., Ding, S.-Y., Baker John, O., Kunkel, G., Vinzant Todd, B. and Himmel Michael, E. (2003) Heterologous expression of Trichoderma reesei 1,4-beta-D-glucan cellobiohydrolase (Cel 7A). In Applications of enzymes to lignocellulosics (pp. 403–437). Washington: American Chemical SocietyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nathan C. Hood
    • 1
  • Kendall R. Hood
    • 1
  • Susan L. Woodard
    • 2
  • Shivakumar P. Devaiah
    • 3
  • Tina Jeoh
    • 4
  • Lisa Wilken
    • 5
  • Zivko Nikolov
    • 6
  • Erin Egelkrout
    • 7
  • John A. Howard
    • 7
  • Elizabeth E. Hood
    • 1
    Email author
  1. 1.Infinite Enzymes, LLCState UniversityUSA
  2. 2.Kalon BiotherapeuticsCollege StationUSA
  3. 3.Department of Biological SciencesEast Tennessee State UniversityJohnson CityUSA
  4. 4.Department of Biological and Agricultural EngineeringUniversity of CaliforniaDavisUSA
  5. 5.Biological and Agricultural EngineeringKansas State UniversityManhattanUSA
  6. 6.Biological and Agricultural EngineeringTexas A&M UniversityCollege StationUSA
  7. 7.Applied Biotechnology Institute, Cal Poly Tech ParkSan Luis ObispoUSA

Personalised recommendations