Skip to main content
Log in

Nanohybrid Based on Antibiotic Encapsulated Layered Double Hydroxide as a Drug Delivery System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanohybrid of cefuroxime (CFO) with layered double hydroxide (LDH) has been prepared, and the rate of dissolution and bioavailability of CFO using nanohybrid as a drug delivery system has been broadly studied. The intercalation process was confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The CFO contents were found to be 19.0 wt% in the nanohybrid. The release mechanism of CFO was investigated with respect to anion and pH of the dissolution media such as gastric, intestinal and blood simulated media. The effect of pH was evaluated on the release of CFO from nanohybrid, and the dissolution of CFO from the nanohybrid was found to be a slow process at pH 4.0, 6.8, and 7.4. Further the addition of Cl ion and PAM in release media did not affect the release rate of drug at pH 4.0 and 6.8, while at pH 7.4, Cl ion and PAM have significant role on the drug release. At pH 1.2, the release study shows that LDH dissolved in the acidic medium and CFO released in its molecular form. The release behavior suggests two mechanisms that are responsible for the release of CFO from nanohybrid: weathering (dependent on the pH) and ion exchange (highly dependent on the anions). Surface reactions mediated by solid weathering ruled the release in gastric fluid, whereas anion exchange determined CFO release in lysosomal, intestinal, and blood medium. In order to evaluate the drug release mechanism, the released data were fitted by mathematical models describing various kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prestwich, G. D., & Luo, Y. (2001). Expert Opinion Therapeutics Patent, 11, 1395–1410.

    Article  Google Scholar 

  2. Ahmed, A., Bonner, C., & Desai, T. A. (2002). Journal of Controlled Release, 81, 291–306.

    Article  CAS  Google Scholar 

  3. Ambrogi, V., Fardella, G., & Grandolini, G. (2001). International Journal of Pharmaceutics, 220, 23–32.

    Article  CAS  Google Scholar 

  4. Ambrogi, V., Fardella, G., Grandolini, G., Nochetti, M., & Perioli, L. (2003). Journal of Pharmaceutical Sciences, 92, 1407–1418.

    Article  CAS  Google Scholar 

  5. Biswick, T., Park, D. H., Shul, Y. G., & Choy, J. H. (2010). Journal of Physics and Chemistry of Solids, 71, 647–649.

    Article  CAS  Google Scholar 

  6. Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2001). European Journal of Pharmaceutics and Biopharmaceutics, 57, 19–34.

    Article  Google Scholar 

  7. Oh, J. M., et al. (2006). Journal of Physics and Chemistry of Solids, 67, 1024–1027.

    Article  CAS  Google Scholar 

  8. Bondesson, L., Mikkelsen, K. V., Garberg, P., & Ågren, H. (2007). Spectrochimica Acta A, 66, 213–224.

    Article  Google Scholar 

  9. Ladewig, K., Xu, Z. P., & Lu, G. Q. (2009). Expert Opinion on Drug Delivery, 6, 907–922.

    Article  CAS  Google Scholar 

  10. Chakraborty, J., Roychowdhury, S., Sengupta, S., & Ghosh, S. (2013). Materials Science Engineering C Materials Biological Applications, 33, 2168–2174.

    Article  CAS  Google Scholar 

  11. Bugatti, V., Gorras, G., Montanari, F., Nocchetti, M., Tammaro, L., & Vittoria, V. (2011). Applied Clay Science, 52, 34–40.

    Article  CAS  Google Scholar 

  12. Choi, S.-J., Oh, J.-M., & Choy, J.-H. (2008). Journal of Physics and Chemistry of Solids, 69, 1528–1532.

    Article  CAS  Google Scholar 

  13. Choy, J. H., Kimb, Y. K., Sona, Y. H., Choy, Y. B., Oha, J. M., Jung, H., & Hwang, S. J. (2008). Journal of Physics and Chemistry of Solids, 69, 1547–1551.

    Article  CAS  Google Scholar 

  14. Choy, J.-H., Choi, S.-J., Oh, J.-M., & Park, T. (2007). Applied Clay Science, 36, 122–132.

    Article  CAS  Google Scholar 

  15. Paek, S. M., Jang, J. U., Hwang, S. J., & Choy, J. H. (2006). Journal of Physics and Chemistry of Solids, 67, 1020–1023.

    Article  CAS  Google Scholar 

  16. Perioli, L., Ambrogi, V., di Nauta, L., Nochetti, M., & Rossi, C. (2011). Applied Clay Science, 51, 407–413.

    Article  CAS  Google Scholar 

  17. Park, J. K., Choy, Y. B., Oh, J. M., Kim, J. Y., Hwang, S. J., & Choy, J. H. (2008). International Journal of Pharmaceutics, 359, 198–204.

    Article  CAS  Google Scholar 

  18. Del Arco, M., Fernández, A., Martín, C., & Rives, V. (2009). Applied Clay Science, 42, 538–544.

    Article  Google Scholar 

  19. Choi, G., Lee, J. H., Oha, Y. J., Choy, Y. B., Park, M. C., Chang, H. C., & Choy, J. H. (2010). International Journal of Pharmaceutics, 402, 117–122.

    Article  CAS  Google Scholar 

  20. Del Hoyo, C. (2007). Applied Clay Science, 36, 103–121.

    Article  Google Scholar 

  21. Ryu, S. J., Jung, H., Oh, J. M., Lee, J. K., & Choy, J. H. (2010). Journal of Physics and Chemistry of Solids, 71, 685–688.

    Article  CAS  Google Scholar 

  22. Khan, S. B., Liu, C., Jang, E. S., Akhtar, K., & Han, H. (2011). Materials Letters, 65, 2923–2926.

    Article  CAS  Google Scholar 

  23. Xu, Z. P., & Lu, G. Q. (2006). Pure and Applied Chemistry, 78, 1771–1779.

    Article  CAS  Google Scholar 

  24. Franz, J. (1975). Journal of Investigative Dermatology, 67, 190–196.

    Article  Google Scholar 

  25. Gordijo, C. R., Barbosa, C. A. S., Ferreira, A. M. D. C., & Constantino, V. R. L. (2005). Journal of Pharmaceutical Sciences, 94, 1135–1148.

    Article  CAS  Google Scholar 

  26. Woo, M. A., Kim, T. W., Paek, M. J., Ha, H. W., Choy, J. H., & Hwang, S. J. (2011). Journal of Solid State Chemistry, 184, 171–176.

    Article  CAS  Google Scholar 

  27. Aisawa, S., Higashiyama, N., Takahashi, S., Hirahara, H., Ikematsu, D., Kondo, H., Nakayama, H., & Narita, E. (2007). Applied Clay Science, 35, 146–154.

    Article  CAS  Google Scholar 

  28. Gunawan, P., & Xu, R. (2008). Journal of Pharmaceutical Sciences, 97, 4367–4378.

    Article  CAS  Google Scholar 

  29. Jinno, J., Kamada, N., Miyake, M., Yamada, K., Mukai, T., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G. G., Higaki, H., & Kimura, T. (2006). Journal of Controlled Release, 111, 56–64.

    Article  CAS  Google Scholar 

  30. Choy, J. H., Junga, J. S., Oha, J. M., Parka, M., Jeong, J., Kang, Y. K., & Han, O. J. (2004). Biomaterials, 25, 3059–3064.

    Article  CAS  Google Scholar 

  31. Kong, X., Jin, L., Wei, M., & Duan, X. (2010). Applied Clay Science, 49, 324–329.

    Article  CAS  Google Scholar 

  32. Li, B., He, J., Evans, D. G., & Duan, X. (2004). International Journal of Pharmaceutics, 287, 89–95.

    Article  CAS  Google Scholar 

  33. Li, A., Qin, L., Wang, W., Zhu, R., Yongchun, Y., Liu, H., & Wang, S. (2011). Biomaterials, 32, 469–477.

    Article  CAS  Google Scholar 

  34. Palazzo, B., Sidoti, M. C., Roveri, N., Tampieri, A., Sandri, M., Bertolazzi, L., Galbusera, F., Dubini, G., Vena, P., & Contro, R. (2005). Materials Science and Engineering C, 25, 207–213.

    Article  Google Scholar 

  35. Neu, H. C., & Fu, K. P. (1978). Antimicrobial Agents and Chemotheraphy, 13, 657–664.

    Article  CAS  Google Scholar 

  36. Rojas, R., Palena, M. C., Jimenez-Kairuz, A. F., Manzo, R. H., & Giacomelli, C. E. (2012). Applied Clay Science, 62–63, 15–20.

    Article  Google Scholar 

  37. Sahoo, S., Chakraborti, C. K., & Behera, P. K. (2012). Journal of Chemical and Pharmaceutical Research, 4, 2268–2284.

    CAS  Google Scholar 

  38. Debi Prasanna Mohanty, Yogesh Panditrao Palve, Debasish Sahoo and P.L.Nayak, International Journal of Pharmaceutical Research & Allied Sciences, 1 (2012) 52–62.

  39. Singhvi, G., & Singh, M. (2011). International Journal Pharmaceutical Studies Research, 2, 77–84.

    Google Scholar 

  40. San Román, M. S., Holgado, M. J., Salinas, B., & Rives, V. (2012). Applied Clay Science, 158–163.

  41. Belskaya, O. B., Gulyaeva, T. I., Leont’eva, N. N., Zaikovskii, V. I., Larina, T. V., Kireeva, T. V., Doronin, V. P., & Likholobov, V. A. (2011). Kinetics and Catalysis, 876–885.

  42. Gao, X., Lei, L., O'Hare, D., Xie, J., Gao, P., & Chang, T. (2013). Journal of Solid State Chemistry, 174–180.

  43. San Román, M. S., Holgado, M. J., Salinas, B., & Rives, V. (2013). Applied Clay Science, 1–7.

  44. Raki, L., Beaudoin, J. J., & Mitchell, L. (2004). Cement and Concrete Research, 1717–1724.

  45. Chakraborty, J., Roychowdhury, S., Sengupta, S., & Ghosh, S. (2013). Materials Science and Engineering C 2168–2174.

  46. Carja, G., Lehutu, G., Dartu, L., Mertens, M., & Cool, P. (2012). Applied Clay Science, 37–42.

  47. Choy, J. H., Oh, J. M., & Choi, S. J. (2011). Elsevier Ltd.

  48. Kima, M. H., Park, D.-H., Yang, J.-H., Choy, Y. B., & Choy, J.-H. (2013). International Journal of Pharmaceutics, 120–127.

  49. Liu, C., Hou, W., Li, L., Li, Y., Liu, S. (2008). Journal of Solid State Chemistry, 1792–1797.

  50. bin Hussein, M. Z., Zainal, Z. , Yahaya, A. H., & Foo, D. W. V. (2002). Journal of Controlled Release, 417–427.

  51. Ambrogi, V., Fardella, G., Grandolini, G., Nocchetti, M., & Perioli, L. (2003). Journal of pharmaceutical sciences, 1407-1418.

  52. Parello, M. L., Rojas, R., & Giacomelli, C. E. (2010). Journal of Colloid and Interface Science, 134–139.

  53. del Arco, M., Fernández, A., Martín, C., & Rives, V. (2010). Journal of Solid State Chemistry, 3002–3009.

  54. Ni, Z., Xing, F., Wang, P., & Cao, G. (2008). Applied Clay Science, 72–80.

  55. Qin, L., Wang, M., Zhu, R., You, S., Zhou, P., & Wang, S. (2013). International Journal of Nanomedicine, 2053–2064.

  56. Perioli, L., Ambrogi, V., di Nauta, L., Nocchetti, M., & Rossi, C. (2011). Applied Clay Science, 407–413.

  57. Ambrogi, V., Perioli, L., Ciarnelli, V., Nocchetti, M., & Rossi, C. (2009). European Journal of Pharmaceutics and Biopharmaceutics 285–291.

  58. Perioli, L., Posati, T., Nocchetti, M., Bellezza, F., Costantino, U., Cipiciani, A. (2011). Applied Clay Science, 374–378.

  59. Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L., & Tiralti, M. C. (2002). AAPS PharmSciTech, 1–6.

  60. Lima, E., Flores, J., Cruz, A. S., Leyva-Gomez, G., & Krotzsch, E. (2013). Microporous and Mesoporous Materials 1–7.

  61. Gasser, M. S. (2009). Colloids and Surfaces B: Biointerfaces, 103–109.

  62. Silion, M., Hritcu, D., Lisa, G., & Popa, M. I. (2012). Journal of Porous Materials, 267–276.

  63. Kurenkov, V. F., Hartan, H.-G., & Lobanov, F. I. (2001). Russian Journal of Applied Chemistry, 543–554.

  64. Hussein, M. Z., Hashim, N., Yahaya, A. Hj., Zainal, Z. (2011). SainsMalaysiana, 887–896.

  65. Li, B., He, J., Evans, D. G., & Duan, X. (2004). Applied Clay Science, 199–207.

  66. Abdul Latip A. F., Hussein, M. Z., Stanslas, J., Wong, C. C., & Adnan, R. (2013). Chemistry Central Journal, 1–11.

  67. Zhang, H., Pan, D., & Duan, X. (2009). Journal of Physical Chemistry C, 12140–12148.

  68. Zhang, H., Zou, K., Guo, S., & Duan, X. (2006). Journal of Solid State Chemistry, 1792–1801.

  69. Qi, F., Zhang, X., & Li, S. (2013). Journal of Physics and Chemistry of Solids, 1101–1108.

  70. Zhang, X.-Q., Zeng, M.-G., Li, S.-P., & Li, X.-D. (2014). Colloids and Surfaces B: Biointerfaces, 98–106.

  71. Rani, G. U., Konreddy, A. K., & Mishra*, S., & Sen, G. (2014). International Journal of Biological Macromolecules, 375–382.

Download references

Acknowledgments

This project was funded by the Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, under Grant no. (CEAMR-434-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sher Bahadar Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.B., Alamry, K.A., Alyahyawi, N.A. et al. Nanohybrid Based on Antibiotic Encapsulated Layered Double Hydroxide as a Drug Delivery System. Appl Biochem Biotechnol 175, 1412–1428 (2015). https://doi.org/10.1007/s12010-014-1211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1211-9

Keywords

Navigation