Skip to main content
Log in

Formulation and Characterisation of Antibody-Conjugated Soy Protein Nanoparticles—Implications for Neutralisation of Snake Venom with Improved Efficiency

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The present study reports the formulation of soy protein nanoparticles and its conjugation to antivenom. The conditions for nanoparticle formation were optimised by considering particle size, count rate, stability and zeta potential. The smallest particle size of 70.9 ± 0.9 nm with a zeta potential of −28.0 ± 1.4 mV was obtained at pH 6.2, with NaOH 5.4 % and 28 μg/mg glutaraldehyde. The nanoparticle was conjugated with antisnake venom immunoglobulins (F(ab′)2 fragments) using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide. TEM analysis indicated the increased size of particle to 600 nm after conjugation to antivenom. Further, in vitro studies indicated that conjugated antibodies inhibited the activity of protease, phospholipase and hyaluronidase enzymes of Bungarus caeruleus venom more efficiently than the free antivenom. This is the first report on the use of protein nanoparticles for conjugating snake venom antibodies and their implications for neutralising snake venom enzymes with increased efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Journal of Controlled Release, 166, 182–194.

    Article  CAS  Google Scholar 

  2. Xu, T., Zhang, N., Nichols, H. L., Shi, D., & Wen, X. (2007). Materials Science and Engineering: C, 27, 579–594.

    Article  CAS  Google Scholar 

  3. Mahapatro, A., & Singh, D. K. (2011). Journal of Nanobiotechnology, 9, 55–66.

    Article  CAS  Google Scholar 

  4. Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Colloids and Surfaces B: Biointerfaces, 75, 1–18.

    Article  CAS  Google Scholar 

  5. Lyu, S., & Untereker, D. (2009). International Journal of Molecular Sciences, 10, 4033–4065.

    Article  CAS  Google Scholar 

  6. Mathiowitz, E. (1999). Encyclopedia of controlled drug delivery (Vol. 2). New York: Wiley.

    Google Scholar 

  7. Jahanshahi, M., & Babaei, Z. (2008). African Journal of Biotechnology, 7, 4926–4934.

    CAS  Google Scholar 

  8. Michaelis, M., Langer, K., Arnold, S., Doerr, H.-W., Kreuter, J., & Cinatl, J., Jr. (2004). Biochemical and Biophysical Research Communications, 323, 1236–1240.

    Article  CAS  Google Scholar 

  9. Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). International Journal of Pharmaceutics, 194, 91–102.

    Article  CAS  Google Scholar 

  10. Barac, M. B., Stanojevic, S. P., Jovanovic, S. T., & Pesic, M. B. (2004). Acta Periodica Technologica, 35, 3–16.

    Article  CAS  Google Scholar 

  11. Yu, L., Yan, D., Sun, G., & Gu, L. (2008). Journal of Applied Polymer Science, 108, 1100–1108.

    Article  CAS  Google Scholar 

  12. Teng, Z., Luo, Y., Wang, T., Zhang, B., & Wang, Q. (2013). Journal of Agricultural and Food Chemistry, 61, 2556–2564.

    Article  CAS  Google Scholar 

  13. Theakston, R., & Warrell, D. (2000). The Lancet, 356, 2104.

    Article  CAS  Google Scholar 

  14. Mohapatra, B., Warrell, D. A., Suraweera, W., Bhatia, P., Dhingra, N., Jotkar, R. M., Rodriguez, P. S., Mishra, K., Whitaker, R., & Jha, P. (2011). PLoS Neglected Tropical Diseases, 5, e1018.

    Article  Google Scholar 

  15. Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & de Silva, H. J. (2008). PLoS Medicine, 5, e218.

    Article  Google Scholar 

  16. Gutiérrez, J. M. (2012). Toxicon, 60, 676–687.

    Article  Google Scholar 

  17. World Health Organization (2010). World Health Organization, Geneva.

  18. Puppo, M. C., & Añón, M. C. (1998). Journal of Agricultural and Food Chemistry, 46, 3583–3589.

    Article  CAS  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  20. Jong, L., & Peterson, S. (2008). Composites Part A: Applied Science and Manufacturing, 39, 1768–1777.

    Article  Google Scholar 

  21. Conde, J., Ambrosone, A., Sanz, V., Hernandez, Y., Marchesano, V., Tian, F., Child, H., Berry, C. C., Ibarra, M. R., & Baptista, P. V. (2012). ACS Nano, 6, 8316–8324.

    Article  CAS  Google Scholar 

  22. Satake, M., Murata, Y., & Suzuki, T. (1963). Venom. Journal of Biochemistry, 53, 438–447.

    CAS  Google Scholar 

  23. Boman, H. G., & Kaletta, U. (1957). Biochimica et Biophysica Acta, 24, 619–631.

    Article  CAS  Google Scholar 

  24. Gutierrez, J., Avila, C., Rojas, E., & Cerdas, L. (1988). Toxicon, 26, 411–413.

    Article  CAS  Google Scholar 

  25. Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). Journal of Biological Chemistry, 217, 959–966.

    CAS  Google Scholar 

  26. Warner, R. C. (1942). Journal of Biological Chemistry, 142, 741–756.

    CAS  Google Scholar 

  27. Kim, S. K. (2013). Marine proteins and peptides: biological activities and applications. New york: Wiley.

    Book  Google Scholar 

  28. Usman, L. A., Ibiyemi, S. A., Oluwaniyi, O. O., & Ameen, O. M. (2003). Biokemistri, 15, 16–21.

    Google Scholar 

  29. Usman, L., Ameen, O., Lawal, A., & Awolola, G. (2009). African Journal of Biotechnology, 8, 6374–6378.

    CAS  Google Scholar 

  30. Teng, Z., Luo, Y., & Wang, Q. (2012). Journal of Agricultural and Food Chemistry, 60, 2712–2720.

    Article  CAS  Google Scholar 

  31. Cao, G., & Brinker, C. J. (2008). Annual review of nano research (Vol. 1). Singapore: World Scientific Publishing Corporation.

    Google Scholar 

  32. Thor, C. J., & Gortner, R. A. (1933). Journal of Biological Chemistry, 99, 383–403.

    CAS  Google Scholar 

  33. Kinsella, J. E. (1979). Journal of the American Oil Chemists’ Society, 56, 242–258.

    Article  CAS  Google Scholar 

  34. Malhotra, A., & Coupland, J. N. (2004). Food Hydrocolloids, 18, 101–108.

    Article  CAS  Google Scholar 

  35. Lakemond, C. M., de Jongh, H. H., Hessing, M., Gruppen, H., & Voragen, A. G. (2000). Journal of Agricultural and Food Chemistry, 48, 1985–1990.

    Article  CAS  Google Scholar 

  36. Smith, A., & Circle, S. J. (1972). Soybeans: chemistry and technology. West Port: The Avi Publ Co.

    Google Scholar 

  37. Liu, C., Teng, Z., Lu, Q.-Y., Zhao, R.-Y., Yang, X.-Q., Tang, C.-H., & Liao, J.-M. (2011). Food Research International, 44, 1392–1400.

    Article  CAS  Google Scholar 

  38. Morrison, I.D., & Ross, S. (2002). Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience.

  39. Jordan, S. L. (1996). Journal of Toxicology and Environmental Health, Part A, 47, 299–309.

    Article  CAS  Google Scholar 

  40. Zhang, J., Liang, L., Tian, Z., Chen, L., & Subirade, M. (2012). Food Chemistry, 133, 390–399.

    Article  CAS  Google Scholar 

  41. Garber, E., & Demarest, S. J. (2007). Biochemical and Biophysical Research Communications, 355, 751–757.

    Article  CAS  Google Scholar 

  42. Vermeer, A. W., & Norde, W. (2000). Biophysical Journal, 78, 394–404.

    Article  CAS  Google Scholar 

  43. Healthcare, G. (2010). Differential factors that contribute to the intrinsic and designed stability of antibody Fab regions. GE Health Care and Bio-Sciences AB Application note 28-9870-46 AA, 6.

  44. Demarest, S. J., Chen, G., Kimmel, B. E., Gustafson, D., Wu, J., Salbato, J., Poland, J., Elia, M., Tan, X., & Wong, K. (2006). Protein Engineering Design and Selection, 19, 325–336.

    Article  CAS  Google Scholar 

  45. Röthlisberger, D., Honegger, A., & Plückthun, A. (2005). Journal of Molecular Biology, 347, 773–789.

    Article  Google Scholar 

  46. Shashidharamurthy, R., & Kemparaju, K. (2007). International Immunopharmacology, 7, 61–69.

    Article  CAS  Google Scholar 

  47. Shashidharamurthy, R., Jagadeesha, D., Girish, K., & Kemparaju, K. (2002). Molecular and Cellular Biochemistry, 229, 93–101.

    Article  CAS  Google Scholar 

  48. Goodson, R. J., & Katre, N. V. (1990). Nature Biotechnology, 8, 343–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the management of VIT University for providing the infrastructure and support. The authors are also thankful to IISc, Bangalore and IIT Bombay, Mumbai, for Particle size analyser and TEM analysis. The generous gift of soya flake by Saptagiri Farm Food, Port Blair is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurunathan Jayaraman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 826 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renu, K., Gopi, K. & Jayaraman, G. Formulation and Characterisation of Antibody-Conjugated Soy Protein Nanoparticles—Implications for Neutralisation of Snake Venom with Improved Efficiency. Appl Biochem Biotechnol 174, 2557–2570 (2014). https://doi.org/10.1007/s12010-014-1207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1207-5

Keywords