Abstract
The present study reports the formulation of soy protein nanoparticles and its conjugation to antivenom. The conditions for nanoparticle formation were optimised by considering particle size, count rate, stability and zeta potential. The smallest particle size of 70.9 ± 0.9 nm with a zeta potential of −28.0 ± 1.4 mV was obtained at pH 6.2, with NaOH 5.4 % and 28 μg/mg glutaraldehyde. The nanoparticle was conjugated with antisnake venom immunoglobulins (F(ab′)2 fragments) using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide. TEM analysis indicated the increased size of particle to 600 nm after conjugation to antivenom. Further, in vitro studies indicated that conjugated antibodies inhibited the activity of protease, phospholipase and hyaluronidase enzymes of Bungarus caeruleus venom more efficiently than the free antivenom. This is the first report on the use of protein nanoparticles for conjugating snake venom antibodies and their implications for neutralising snake venom enzymes with increased efficiency.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A., & Chen, P. (2013). Journal of Controlled Release, 166, 182–194.
Xu, T., Zhang, N., Nichols, H. L., Shi, D., & Wen, X. (2007). Materials Science and Engineering: C, 27, 579–594.
Mahapatro, A., & Singh, D. K. (2011). Journal of Nanobiotechnology, 9, 55–66.
Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Colloids and Surfaces B: Biointerfaces, 75, 1–18.
Lyu, S., & Untereker, D. (2009). International Journal of Molecular Sciences, 10, 4033–4065.
Mathiowitz, E. (1999). Encyclopedia of controlled drug delivery (Vol. 2). New York: Wiley.
Jahanshahi, M., & Babaei, Z. (2008). African Journal of Biotechnology, 7, 4926–4934.
Michaelis, M., Langer, K., Arnold, S., Doerr, H.-W., Kreuter, J., & Cinatl, J., Jr. (2004). Biochemical and Biophysical Research Communications, 323, 1236–1240.
Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). International Journal of Pharmaceutics, 194, 91–102.
Barac, M. B., Stanojevic, S. P., Jovanovic, S. T., & Pesic, M. B. (2004). Acta Periodica Technologica, 35, 3–16.
Yu, L., Yan, D., Sun, G., & Gu, L. (2008). Journal of Applied Polymer Science, 108, 1100–1108.
Teng, Z., Luo, Y., Wang, T., Zhang, B., & Wang, Q. (2013). Journal of Agricultural and Food Chemistry, 61, 2556–2564.
Theakston, R., & Warrell, D. (2000). The Lancet, 356, 2104.
Mohapatra, B., Warrell, D. A., Suraweera, W., Bhatia, P., Dhingra, N., Jotkar, R. M., Rodriguez, P. S., Mishra, K., Whitaker, R., & Jha, P. (2011). PLoS Neglected Tropical Diseases, 5, e1018.
Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & de Silva, H. J. (2008). PLoS Medicine, 5, e218.
Gutiérrez, J. M. (2012). Toxicon, 60, 676–687.
World Health Organization (2010). World Health Organization, Geneva.
Puppo, M. C., & Añón, M. C. (1998). Journal of Agricultural and Food Chemistry, 46, 3583–3589.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.
Jong, L., & Peterson, S. (2008). Composites Part A: Applied Science and Manufacturing, 39, 1768–1777.
Conde, J., Ambrosone, A., Sanz, V., Hernandez, Y., Marchesano, V., Tian, F., Child, H., Berry, C. C., Ibarra, M. R., & Baptista, P. V. (2012). ACS Nano, 6, 8316–8324.
Satake, M., Murata, Y., & Suzuki, T. (1963). Venom. Journal of Biochemistry, 53, 438–447.
Boman, H. G., & Kaletta, U. (1957). Biochimica et Biophysica Acta, 24, 619–631.
Gutierrez, J., Avila, C., Rojas, E., & Cerdas, L. (1988). Toxicon, 26, 411–413.
Reissig, J. L., Strominger, J. L., & Leloir, L. F. (1955). Journal of Biological Chemistry, 217, 959–966.
Warner, R. C. (1942). Journal of Biological Chemistry, 142, 741–756.
Kim, S. K. (2013). Marine proteins and peptides: biological activities and applications. New york: Wiley.
Usman, L. A., Ibiyemi, S. A., Oluwaniyi, O. O., & Ameen, O. M. (2003). Biokemistri, 15, 16–21.
Usman, L., Ameen, O., Lawal, A., & Awolola, G. (2009). African Journal of Biotechnology, 8, 6374–6378.
Teng, Z., Luo, Y., & Wang, Q. (2012). Journal of Agricultural and Food Chemistry, 60, 2712–2720.
Cao, G., & Brinker, C. J. (2008). Annual review of nano research (Vol. 1). Singapore: World Scientific Publishing Corporation.
Thor, C. J., & Gortner, R. A. (1933). Journal of Biological Chemistry, 99, 383–403.
Kinsella, J. E. (1979). Journal of the American Oil Chemists’ Society, 56, 242–258.
Malhotra, A., & Coupland, J. N. (2004). Food Hydrocolloids, 18, 101–108.
Lakemond, C. M., de Jongh, H. H., Hessing, M., Gruppen, H., & Voragen, A. G. (2000). Journal of Agricultural and Food Chemistry, 48, 1985–1990.
Smith, A., & Circle, S. J. (1972). Soybeans: chemistry and technology. West Port: The Avi Publ Co.
Liu, C., Teng, Z., Lu, Q.-Y., Zhao, R.-Y., Yang, X.-Q., Tang, C.-H., & Liao, J.-M. (2011). Food Research International, 44, 1392–1400.
Morrison, I.D., & Ross, S. (2002). Colloidal dispersions: suspensions, emulsions, and foams. Wiley-Interscience.
Jordan, S. L. (1996). Journal of Toxicology and Environmental Health, Part A, 47, 299–309.
Zhang, J., Liang, L., Tian, Z., Chen, L., & Subirade, M. (2012). Food Chemistry, 133, 390–399.
Garber, E., & Demarest, S. J. (2007). Biochemical and Biophysical Research Communications, 355, 751–757.
Vermeer, A. W., & Norde, W. (2000). Biophysical Journal, 78, 394–404.
Healthcare, G. (2010). Differential factors that contribute to the intrinsic and designed stability of antibody Fab regions. GE Health Care and Bio-Sciences AB Application note 28-9870-46 AA, 6.
Demarest, S. J., Chen, G., Kimmel, B. E., Gustafson, D., Wu, J., Salbato, J., Poland, J., Elia, M., Tan, X., & Wong, K. (2006). Protein Engineering Design and Selection, 19, 325–336.
Röthlisberger, D., Honegger, A., & Plückthun, A. (2005). Journal of Molecular Biology, 347, 773–789.
Shashidharamurthy, R., & Kemparaju, K. (2007). International Immunopharmacology, 7, 61–69.
Shashidharamurthy, R., Jagadeesha, D., Girish, K., & Kemparaju, K. (2002). Molecular and Cellular Biochemistry, 229, 93–101.
Goodson, R. J., & Katre, N. V. (1990). Nature Biotechnology, 8, 343–346.
Acknowledgments
The authors are thankful to the management of VIT University for providing the infrastructure and support. The authors are also thankful to IISc, Bangalore and IIT Bombay, Mumbai, for Particle size analyser and TEM analysis. The generous gift of soya flake by Saptagiri Farm Food, Port Blair is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 826 kb)
Rights and permissions
About this article
Cite this article
Renu, K., Gopi, K. & Jayaraman, G. Formulation and Characterisation of Antibody-Conjugated Soy Protein Nanoparticles—Implications for Neutralisation of Snake Venom with Improved Efficiency. Appl Biochem Biotechnol 174, 2557–2570 (2014). https://doi.org/10.1007/s12010-014-1207-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-014-1207-5


