Skip to main content
Log in

Biodesulfurization of a System Containing Synthetic Fuel Using Rhodococcus erythropolis ATCC 4277

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The burning of fossil fuels has released a large quantity of pollutants into the atmosphere. In this context, sulfur dioxide is one of the most noxious gas which, on reacting with moist air, is transformed into sulfuric acid, causing the acid rain. In response, many countries have reformulated their legislation in order to enforce the commercialization of fuels with very low sulfur levels. The existing desulfurization processes cannot remove such low levels of sulfur and thus a biodesulfurization has been developed, where the degradation of sulfur occurs through the action of microorganisms. Rhodococcus erythropolis has been identified as one of the most promising bacteria for use in the biodesulfurization. In this study, the effectiveness of the strain R. erythropolis ATCC 4277 in the desulfurization of dibenzothiophene (DBT) was evaluated in a batch reactor using an organic phase (n-dodecane or diesel) concentrations of 20, 80, and 100 % (v/v). This strain was able to degrade 93.3, 98.0, and 95.5 % of the DBT in the presence of 20, 80, and 100 % (v/v) of dodecane, respectively. The highest value for the specific DBT degradation rate was 44 mmol DBT · kg DCW−1 · h−1, attained in the reactor containing 80 % (v/v) of n-dodecane as the organic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Onaka, T., Konishi, J., Ishii, Y., & Maruhashi, K. (2001). Journal of Bioscience and Bioengineering, 92, 193–196.

    Article  CAS  Google Scholar 

  2. Stanislaus, A., Marafi, A., & Rana, M. S. (2010). Catalysis Today, 153, 1–68.

    Article  CAS  Google Scholar 

  3. Song, C. (2003). Catalysis Today, 86, 211–263.

    Article  CAS  Google Scholar 

  4. Oyama, S. T., Gott, T., Zhao, H., & Lee, Y. (2008). Catalysis Today, 143, 94–107.

    Article  Google Scholar 

  5. Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2005). Applied Microbiology and Biotechnology, 66, 356–366.

    Article  CAS  Google Scholar 

  6. Le Borgne, S., & Quintero, R. (2006). Fuel Processing Technology, 81, 155–169.

    Article  Google Scholar 

  7. Oldfield, C., Wood, N. T., Gilbert, S. C., Murray, F. D., & Faure, F. R. (1998). Van Leeuwenhoek Journal Microbial, 74, 119–132.

    Article  CAS  Google Scholar 

  8. Gray, K. A., Rhee, S., Chang, J. H., Chang, Y. K., & Chang, H. N. (1996). Abstracts of Papers of the American Chemical Society, 212, 54–58.

    Google Scholar 

  9. Kilbane, J. J., III, & Jackowski, K. (1992). Biotechnology and Bioengineering, 40, 1107–1114.

    Article  CAS  Google Scholar 

  10. Monticello, D. J. (2000). Current Opinion in Biotechnology, 11, 540–546.

    Article  CAS  Google Scholar 

  11. Folsom, B. R., Schieche, D. R., Digrazia, P. M., Werner, J., & Palmer, S. (1999). Applied and Environmental Microbiology, 65, 4967–4972.

    CAS  Google Scholar 

  12. Guchhait, S., Biswas, D., Bhattacharya, P., & Chowdhury, R. (2005). Chemical Engineering Journal, 112, 145–151.

    Article  CAS  Google Scholar 

  13. Li, F., Xu, P., Ma, C. Q., Luo, L. L., & Wang, X. S. (2005). Applied and Environmental Microbiology, 71, 276–281.

    Article  CAS  Google Scholar 

  14. McFarland, B. L. (1999). Current Opinion in Microbiology, 2, 257–264.

    Article  CAS  Google Scholar 

  15. Maghsoudi, S., Vossoughi, S., Kheirolomoom, A., Tanaka, E., & Katoh, S. (2001). Biochemical Engineering Journal, 8, 151–156.

    Article  CAS  Google Scholar 

  16. Yu, B., Ma, C., Zhou, W., Wang, Y., Cai, X., Tao, F., Zhang, Q., Tong, M., Qu, J., & Xu, P. (2006). FEMS Microbiology Letters, 258, 284–289.

    Article  CAS  Google Scholar 

  17. Zhang, Q., Tong, M. Y., Li, Y. S., Gao, H. J., & Fang, X. C. (2007). Biotechnology Letters, 29, 123–127.

    Article  Google Scholar 

  18. Davoodi-Dehaghani, F., Vosoughi, M., & Ziaee, A. A. (2001). Bioresource Technology, 101, 1102–1105.

    Article  Google Scholar 

  19. Ohshiro, T., Hirata, T., Hashimoto, I., & Izumi, Y. (1996). Journal of Fermentation and Bioengineering, 82, 610–612.

    Article  CAS  Google Scholar 

  20. Li, G. Q., Li, S. S., Qu, S. W., Ma, T., Zhu, L., Liang, F. L., & Liu, R. L. (2008). Biotechnology Letters, 30, 1759–1764.

    Article  CAS  Google Scholar 

  21. Naito, M., Kawamoto, T., Fujino, K., Kobayashi, M., Marushashi, K., & Tanaka, A. (2001). Applied Microbiology and Biotechnology, 55, 374–378.

    Article  CAS  Google Scholar 

  22. Debabov, V. G. (2010). Applied Biochemistry and Microbiology, 46, 733–738.

    Article  CAS  Google Scholar 

  23. Setti, L., Lanzarini, G., & Pifferi, P. G. (1997). Fuel Processing Technology, 52, 145–153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following Brazilian Petroleum Agency program for financially supporting this study: Formação de Recursos Humanos da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis-ANP, through PRH-09/MECPETRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene M. A. Guelli U. Souza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, D., de Oliveira, D., de Souza, A.A.U. et al. Biodesulfurization of a System Containing Synthetic Fuel Using Rhodococcus erythropolis ATCC 4277. Appl Biochem Biotechnol 174, 2079–2085 (2014). https://doi.org/10.1007/s12010-014-1189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1189-3

Keywords

Navigation