Skip to main content
Log in

Mass Transfer Analysis of Growth and Substance Metabolism of NSCs Cultured in Collagen-Based Scaffold In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to analyze the growth and substance metabolism of neural stem cells (NSCs) cultured in biological collagen-based scaffolds. Mass transfer and metabolism model of glucose, lactic acid, and dissolved oxygen (DO) were established and solved on MATLAB platform to obtain the concentration distributions of DO, glucose, and lactic acid in culture system, respectively. Calculation results showed that the DO influenced their normal growth and metabolism of NSCs mostly in the in vitro culture within collagen-based scaffolds. This study also confirmed that 2-mm thickness of collagen scaffold was capable of in vitro cultivation and growth of NSCs with an inoculating density of 1 × 106 cells/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313–1317.

    Article  CAS  Google Scholar 

  2. McKay, R. (1997). Stem cells in the central nervous system. Science, 276(5309), 66–71.

    Article  CAS  Google Scholar 

  3. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052), 1707–1710.

    Article  CAS  Google Scholar 

  4. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433–1438.

    Article  CAS  Google Scholar 

  5. Kallos, M. S., & Behie, L. A. (1999). Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnology and Bioengineering, 63(4), 473–483.

    Article  CAS  Google Scholar 

  6. Sivakumar, K. C., Dhanesh, S. B., Shobana, S., et al. (2011). A systems biology approach to model neural stem cell regulation by notch, shh, wnt, and egf signaling pathways. OMICS, 15(10), 729–737.

    Article  CAS  Google Scholar 

  7. Theus MH, Ricard J, Liebl DJ. Reproducible expansion and characterization of mouse neural stem/progenitor cells in adherent cultures derived from the adult subventricular zone. Current Protocols Stem Cell Biology. Chapter 2: Unit 2D 8.

  8. Liu, T., Ge, D., Cheng, F., et al. (2006). Simulation of the growth of neurosphere cultured in bioreactors. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 23(1), 147–152.

    Google Scholar 

  9. Buhnemann, C., Scholz, A., Bernreuther, C., et al. (2006). Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain, 129(Pt 12), 3238–3248.

    Article  Google Scholar 

  10. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1879.

    Article  CAS  Google Scholar 

  11. Chen, L., Xiao, Z., Meng, Y., et al. (2012). The enhancement of cancer stem cell properties of mcf-7 cells in 3d collagen scaffolds for modeling of cancer and anti-cancer drugs. Biomaterials, 33(5), 1437–1444.

    Article  CAS  Google Scholar 

  12. Ma, W., Tavakoli, T., Chen, S., et al. (2008). Reconstruction of functional cortical-like tissues from neural stem and progenitor cells. Tissue Engineering Part A, 14(10), 1673–1686.

    Article  CAS  Google Scholar 

  13. Brito, C., Simao, D., Costa, I., et al. (2012). 3d cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected]. Methods, 56(3), 452–460.

    Article  CAS  Google Scholar 

  14. Doetsch, F., Caille, I., Lim, D. A., et al. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716.

    Article  CAS  Google Scholar 

  15. Cai, J., Wu, Y., Mirua, T., et al. (2002). Properties of a fetal multipotent neural stem cell (nep cell). Developmental Biology, 251(2), 221–240.

    Article  CAS  Google Scholar 

  16. Gritti, A., Parati, E. A., Cova, L., et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. Journal of Neuroscience, 16(3), 1091–1100.

    CAS  Google Scholar 

  17. Svendsen, C. N., ter Borg, M. G., Armstrong, R. J., et al. (1998). A new method for the rapid and long term growth of human neural precursor cells. Journal of Neuroscience Methods, 85(2), 141–152.

    Article  CAS  Google Scholar 

  18. Guan, S., Ge, D., Liu, T. Q., et al. (2009). Protocatechuic acid promotes cell proliferation and reduces basal apoptosis in cultured neural stem cells. Toxicology In Vitro, 23(2), 201–208.

    Article  CAS  Google Scholar 

  19. Kanemura, Y., Mori, H., Kobayashi, S., et al. (2002). Evaluation of in vitro proliferative activity of human fetal neural stem/progenitor cells using indirect measurements of viable cells based on cellular metabolic activity. Journal of Neuroscience Research, 69(6), 869–879.

    Article  CAS  Google Scholar 

  20. Ishikawa, T., Zhu, B. L., & Maeda, H. (2006). Effect of sodium azide on the metabolic activity of cultured fetal cells. Toxicology and Industrial Health, 22(8), 337–341.

    CAS  Google Scholar 

  21. Akyilmaz, E., Yasa, I., & Dinckaya, E. (2006). Whole cell immobilized amperometric biosensor based on saccharomyces cerevisiae for selective determination of vitamin b1 (thiamine). Analytical Biochemistry, 354(1), 78–84.

    Article  CAS  Google Scholar 

  22. Selard, E., Shirazi-Adl, A., & Urban, J. P. (2003). Finite element study of nutrient diffusion in the human intervertebral disc. Spine (Phila Pa 1976), 28(17), 1945–1953. discussion 1953.

    Article  Google Scholar 

  23. Sengers, B. G., van Donkelaar, C. C., Oomens, C. W., et al. (2005). Computational study of culture conditions and nutrient supply in cartilage tissue engineering. Biotechnology Progress, 21(4), 1252–1261.

    Article  CAS  Google Scholar 

  24. Svendsen, C. N., Skepper, J., Rosser, A. E., et al. (1997). Restricted growth potential of rat neural precursors as compared to mouse. Brain Research. Developmental Brain Research, 99(2), 253–258.

    Article  CAS  Google Scholar 

  25. Liu, T., Dai, M. S., Ge, D., et al. (2006). Study of viability and metabolism parameters of NSPCs. Journal of Dalian University of Technology Spine, 48(6), 811–818.

    Google Scholar 

  26. Ozturk, S. S., Thrift, J. C., Blackie, J. D., et al. (1997). Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnology and Bioengineering, 53(4), 372–378.

    Article  CAS  Google Scholar 

  27. Patel, S. D., Papoutsakis, E. T., Winter, J. N., et al. (2000). The lactate issue revisited: novel feeding protocols to examine inhibition of cell proliferation and glucose metabolism in hematopoietic cell cultures. Biotechnology Progress, 16(5), 885–892.

    Article  CAS  Google Scholar 

  28. Fujita, Y., Kuchimaru, T., Kadonosono, T., et al. (2012). In vivo imaging of brain ischemia using an oxygen-dependent degradative fusion protein probe. PLoS One, 7(10), e48051.

    Article  CAS  Google Scholar 

  29. Stippler, M., Ortiz, V., Adelson, P. D., et al. (2012). Brain tissue oxygen monitoring after severe traumatic brain injury in children: relationship to outcome and association with other clinical parameters. Journal of Neurosurgery Pediatrics, 10(5), 383–391.

    Article  Google Scholar 

  30. Zhu, L. L., Zhao, T., Huang, X., et al. (2011). Gene expression profiles and metabolic changes in embryonic neural progenitor cells under low oxygen. Cellular Reprogramming, 13(2), 113–120.

    Article  CAS  Google Scholar 

  31. Milosevic, J., Schwarz, S. C., Krohn, K., et al. (2005). Low atmospheric oxygen avoids maturation, senescence and cell death of murine mesencephalic neural precursors. Journal of Neurochemistry, 92(4), 718–729.

    Article  CAS  Google Scholar 

  32. Maciaczyk, J., Singec, I., Maciaczyk, D., et al. (2008). Combined use of bdnf, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Experimental Neurology, 213(2), 354–362.

    Article  CAS  Google Scholar 

  33. Clarke, L., & van der Kooy, D. (2009). Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells, 27(8), 1879–1886.

    Article  CAS  Google Scholar 

  34. Cukierman, E., Pankov, R., & Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 14(5), 633–639.

    Article  CAS  Google Scholar 

  35. Irons, H. R., Cullen, D. K., Shapiro, N. P., et al. (2008). Three-dimensional neural constructs: a novel platform for neurophysiological investigation. Journal of Neural Engineering, 5(3), 333–341.

    Article  Google Scholar 

  36. Lee, J., Cuddihy, M. J., & Kotov, N. A. (2008). Three-dimensional cell culture matrices: state of the art. Tissue Engineering. Part B, Reviews, 14(1), 61–86.

    Article  CAS  Google Scholar 

  37. Mueller-Klieser, W. (1997). Three-dimensional cell cultures: from molecular mechanisms to clinical applications. American Journal of Physiology, 273(4 Pt 1), C1109–C1123.

    CAS  Google Scholar 

  38. Zervantonakis, I. K., Kothapalli, C. R., Chung, S., et al. (2011). Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. Biomicrofluidics, 5(1), 13406.

    Article  Google Scholar 

  39. Leipzig, N. D., Wylie, R. G., Kim, H., et al. (2011). Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials, 32(1), 57–64.

    Article  CAS  Google Scholar 

  40. Drago, F., Russo, M. S., Marazzi, R., et al. (2011). Atrial tachycardias in patients with congenital heart disease: a minimally invasive simplified approach in the use of three-dimensional electroanatomic mapping. Europace, 13(5), 689–695.

    Article  Google Scholar 

  41. Lai, Y., Asthana, A., Cheng, K., et al. (2011). Neural cell 3d microtissue formation is marked by cytokines’ up-regulation. PLoS One, 6(10), e26821.

    Article  CAS  Google Scholar 

  42. Stabenfeldt, S. E., Munglani, G., Garcia, A. J., et al. (2010). Biomimetic microenvironment modulates neural stem cell survival, migration, and differentiation. Tissue Engineering Part A, 16(12), 3747–3758.

    Article  CAS  Google Scholar 

  43. Itoh, T., Satou, T., Dote, K., et al. (2005). Effect of basic fibroblast growth factor on cultured rat neural stem cell in three-dimensional collagen gel. Neurological Research, 27(4), 429–432.

    Article  CAS  Google Scholar 

  44. O’Connor, S. M., Stenger, D. A., Shaffer, K. M., et al. (2000). Primary neural precursor cell expansion, differentiation and cytosolic ca (2+) response in three-dimensional collagen gel. Journal of Neuroscience Methods, 102(2), 187–195.

    Article  Google Scholar 

  45. Rodrigues, C. A., Fernandes, T. G., Diogo, M. M., et al. (2011). Stem cell cultivation in bioreactors. Biotechnology Advances, 29(6), 815–829.

    Article  CAS  Google Scholar 

  46. Lichtenberg, A., Dumlu, G., Walles, T., et al. (2005). A multifunctional bioreactor for three-dimensional cell (co)-culture. Biomaterials, 26(5), 555–562.

    Article  CAS  Google Scholar 

  47. Muller, J., Benz, K., Ahlers, M., et al. (2011). Hypoxic conditions during expansion culture prime human mesenchymal stromal precursor cells for chondrogenic differentiation in three-dimensional cultures. Cell Transplantation, 20(10), 1589–1602.

    Article  Google Scholar 

  48. Mori, Y., Kubokawa, M., Hagiwara, N., et al. (1994). Role of ph-sensitive ion channels in regulation of cell volume in opossum kidney cells. Japanese Journal of Physiology, 44(Suppl 2), S81–S86.

    CAS  Google Scholar 

  49. Yu, H., & Ferrier, J. (1995). Osteoclast atp receptor activation leads to a transient decrease in intracellular ph. Journal of Cell Science, 108(Pt 9), 3051–3058.

    CAS  Google Scholar 

  50. King, B. F., Liu, M., Townsend-Nicholson, A., et al. (2005). Antagonism of atp responses at p2x receptor subtypes by the ph indicator dye, phenol red. British Journal of Pharmacology, 145(3), 313–322.

    Article  CAS  Google Scholar 

  51. Motizuki, M., & Xu, Z. (2009). Importance of polarisome proteins in reorganization of actin cytoskeleton at low ph in saccharomyces cerevisiae. Journal of Biochemistry, 146(5), 705–712.

    Article  CAS  Google Scholar 

  52. Chen, K. C., Wu, C. H., Chang, C. Y., et al. (2008). Directed evolution of a lysosomal enzyme with enhanced activity at neutral ph by mammalian cell-surface display. Chemical Biology, 15(12), 1277–1286.

    Article  CAS  Google Scholar 

  53. Schultheiss, E., Weiss, S., Winterer, E., et al. (2008). Esterase autodisplay: enzyme engineering and whole-cell activity determination in microplates with ph sensors. Applied and Environmental Microbiology, 74(15), 4782–4791.

    Article  CAS  Google Scholar 

  54. Grineva, N. I., Akhlynina, T. V., Gerasimova, L. P., et al. (2009). Cell regulation of proliferation and differentiation ex vivo for cells containing ph chromosome in chronic myeloid leukemia. Acta Naturae, 1(3), 108–120.

    CAS  Google Scholar 

  55. Isfort, R. J., Cody, D. B., Stuard, S. B., et al. (1996). Calcium functions as a transcriptional and mitogenic repressor in syrian hamster embryo cells: roles of intracellular ph and calcium in controlling embryonic cell differentiation and proliferation. Experimental Cell Research, 226(2), 363–371.

    Article  CAS  Google Scholar 

  56. Valentin, J. E., Freytes, D. O., Grasman, J. M., et al. (2009). Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering. Journal of Biomedical Materials Research. Part A, 91(4), 1010–1017.

    Article  Google Scholar 

  57. Landman, K. A., & Cai, A. Q. (2007). Cell proliferation and oxygen diffusion in a vascularising scaffold. Bulletin of Mathematical Biology, 69(7), 2405–2428.

    Article  Google Scholar 

  58. Chin, K., Khattak, S. F., Bhatia, S. R., et al. (2008). Hydrogel-perfluorocarbon composite scaffold promotes oxygen transport to immobilized cells. Biotechnology Progress, 24(2), 358–366.

    Article  CAS  Google Scholar 

  59. Kowalczyk, M., Waldron, K., Kresnowati, P., et al. (2011). Process challenges relating to hematopoietic stem cell cultivation in bioreactors. Journal of Industrial Microbiology and Biotechnology, 38(7), 761–767.

    Article  CAS  Google Scholar 

  60. Kehoe, D. E., Jing, D., Lock, L. T., et al. (2010). Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Engineering Part A, 16(2), 405–421.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fok Ying Tung Education Foundation (132027), National Science Foundation of China (31370991/31300809/31170945), Dalian Science and Technology Plan (2012E15SF174) and State Key Laboratory of Fine Chemicals (KF1111) and Fundamental Research Funds for the Central Universities (DUT14YQ106/DUT14QY20) and SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kedong Song or Tianqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, K., Ge, D., Guan, S. et al. Mass Transfer Analysis of Growth and Substance Metabolism of NSCs Cultured in Collagen-Based Scaffold In Vitro. Appl Biochem Biotechnol 174, 2114–2130 (2014). https://doi.org/10.1007/s12010-014-1165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1165-y

Keywords

Navigation