Abstract
The genome of the cellulase-producing fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) was screened for a potent DNA ligase IV gene (ligD homologue). Homologous recombination efficiency in T. cellulolyticus is very low. Therefore, suppression of a non-homologous end-joining system was attempted to enable specific gene knockouts for molecular breeding. The transcript levels of ligD homologue were 0.037 of those of the parental YP-4 strain in the Li20 transformant carrying the RNAi construct targeting the ligD homologue. Transformation of the hairpin-type RNAi vector into T. cellulolyticus could be useful in fungal gene knockdown experiments. Cellulase production and protein secretion were similar in the parental YP-4 strain and the Li20 transformant. Knockout transformation of ligD homologue using the Li20 transformant led to 23.1 % double crossover gene targeting. Our results suggest that the potent DNA ligase IV gene of T. cellulolyticus is related to non-homologous end joining and that the knockdown of the ligD homologue is useful in gene targeting.



Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ghose, T. K., & Sahai, V. (1979). Biotechnology and Bioengineering, 21, 283–296.
Kubicek, C. P. (2013). Journal of Biotechnology, 163, 133–142.
Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Biotechnology for Biofuels, 2(24), 1–8.
Kanna, M., Yano, S., Inoue, H., Fujii, T., & Sawayama, S. (2011). AMB Express, 1(15), 1–8.
Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 245–249.
Asada, S., Watanabe, S., Fujii, T., Inoue, H., Ishikawa, K., & Sawayama, S. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0728-2.
Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.
Fujii, T., Hoshino, T., Inoue, H., & Yano, S. (2014). Federation of European Microbiological Societies Microbiology Letters, 351, 32–41.
Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Journal of Bioscience and Bioengineering, 107, 256–261.
Martinez, D., Berka, R. M., Henrissat, B., et al. (2008). Nature Biotechnology, 26, 553–560.
Seidl, V., & Seiboth, B. (2010). Biofuels, 1, 343–354.
Ninomiya, Y., Suzuki, K., Ishii, C., & Inoue, H. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 12248–12253.
Ishibashi, K., Suzuki, K., Ando, Y., Takakura, C., & Inoue, H. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 14871–14876.
Steiger, M. G., Vitikainen, M., Uskonen, P., Brunner, K., Adam, G., Pakula, T., Penttilä, M., Saloheimo, M., Mach, R. L., & Mach-Aigner, A. R. (2011). Applied and Environmental Microbiology, 77, 114–121.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Nature, 391, 806–811.
Rahman, M., Ali, I., Husnain, T., & Riazuddin, S. (2008). Biotechnology Advances, 26, 202–209.
Romano, N., & Macino, G. (1992). Molecular Microbiology, 6, 3343–3353.
Rappleye, C. A., Engle, J. T., & Goldman, W. E. (2004). Molecular Microbiology, 53, 153–165.
Janus, D., Hoff, B., Hofmann, E., & Kück, U. (2007). Applied and Environmental Microbiology, 73, 962–970.
Nakayashiki, H., & Nguyen, Q. B. (2008). Current Opinion in Microbiology, 11, 494–502.
Imamura, K., Tsuyama, Y., Hirata, T., Shiraishi, S., Sakamoto, K., Yamada, O., Akita, O., & Shimoi, H. (2012). Applied and Environmental Microbiology, 78, 6996–7002.
Inoue, H., Fujii, T., Yoshimi, M., Taylor, L. E., II, Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Journal of Industrial Microbiology and Biotechnology, 40, 823–830.
Yuen, K. Y., Pascal, G., Wong, S. S., Glaser, P., Woo, P. C., Kunst, F., Cai, J. J., Cheung, E. Y., Médigue, C., & Danchin, A. (2003). Archives of Microbiology, 179, 339–353.
Kistler, H. C., & Benny, U. (1992). Gene, 117, 81–89.
Fujii, T., Murakami, K., & Sawayama, S. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 419–422.
Fujii, T., Inoue, H., & Ishikawa, K. (2013). AMB Express, 3(73), 1–9.
Guangtao, Z., Hartl, L., Schuster, A., Polak, S., Schmoll, M., Wang, T. H., Seidl, V., & Seiboth, B. (2009). Journal of Biotechnology, 139, 146–151.
Maruyama, J., & Kitamoto, K. (2008). Biotechnology Letters, 30, 1811–1817.
Acknowledgments
This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hayata, K., Asada, S., Fujii, T. et al. Gene Targeting by RNAi-Mediated Knockdown of Potent DNA Ligase IV Homologue in the Cellulase-Producing Fungus Talaromyces cellulolyticus . Appl Biochem Biotechnol 174, 1697–1704 (2014). https://doi.org/10.1007/s12010-014-1142-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-014-1142-5