Skip to main content

Advertisement

Log in

Gene Targeting by RNAi-Mediated Knockdown of Potent DNA Ligase IV Homologue in the Cellulase-Producing Fungus Talaromyces cellulolyticus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The genome of the cellulase-producing fungus Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) was screened for a potent DNA ligase IV gene (ligD homologue). Homologous recombination efficiency in T. cellulolyticus is very low. Therefore, suppression of a non-homologous end-joining system was attempted to enable specific gene knockouts for molecular breeding. The transcript levels of ligD homologue were 0.037 of those of the parental YP-4 strain in the Li20 transformant carrying the RNAi construct targeting the ligD homologue. Transformation of the hairpin-type RNAi vector into T. cellulolyticus could be useful in fungal gene knockdown experiments. Cellulase production and protein secretion were similar in the parental YP-4 strain and the Li20 transformant. Knockout transformation of ligD homologue using the Li20 transformant led to 23.1 % double crossover gene targeting. Our results suggest that the potent DNA ligase IV gene of T. cellulolyticus is related to non-homologous end joining and that the knockdown of the ligD homologue is useful in gene targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ghose, T. K., & Sahai, V. (1979). Biotechnology and Bioengineering, 21, 283–296.

    Article  CAS  Google Scholar 

  2. Kubicek, C. P. (2013). Journal of Biotechnology, 163, 133–142.

    Article  CAS  Google Scholar 

  3. Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Biotechnology for Biofuels, 2(24), 1–8.

    Google Scholar 

  4. Kanna, M., Yano, S., Inoue, H., Fujii, T., & Sawayama, S. (2011). AMB Express, 1(15), 1–8.

    Google Scholar 

  5. Fujii, T., Iwata, K., Murakami, K., Yano, S., & Sawayama, S. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 245–249.

    Article  CAS  Google Scholar 

  6. Asada, S., Watanabe, S., Fujii, T., Inoue, H., Ishikawa, K., & Sawayama, S. (2014). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-0728-2.

    Google Scholar 

  7. Yamanobe, T., Mitsuishi, Y., & Takasaki, Y. (1987). Agricultural and Biological Chemistry, 51, 65–74.

    Article  CAS  Google Scholar 

  8. Fujii, T., Hoshino, T., Inoue, H., & Yano, S. (2014). Federation of European Microbiological Societies Microbiology Letters, 351, 32–41.

    Article  CAS  Google Scholar 

  9. Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Journal of Bioscience and Bioengineering, 107, 256–261.

    Article  CAS  Google Scholar 

  10. Martinez, D., Berka, R. M., Henrissat, B., et al. (2008). Nature Biotechnology, 26, 553–560.

    Article  CAS  Google Scholar 

  11. Seidl, V., & Seiboth, B. (2010). Biofuels, 1, 343–354.

    Article  CAS  Google Scholar 

  12. Ninomiya, Y., Suzuki, K., Ishii, C., & Inoue, H. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 12248–12253.

    Article  CAS  Google Scholar 

  13. Ishibashi, K., Suzuki, K., Ando, Y., Takakura, C., & Inoue, H. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 14871–14876.

    Article  CAS  Google Scholar 

  14. Steiger, M. G., Vitikainen, M., Uskonen, P., Brunner, K., Adam, G., Pakula, T., Penttilä, M., Saloheimo, M., Mach, R. L., & Mach-Aigner, A. R. (2011). Applied and Environmental Microbiology, 77, 114–121.

    Article  CAS  Google Scholar 

  15. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Nature, 391, 806–811.

    Article  CAS  Google Scholar 

  16. Rahman, M., Ali, I., Husnain, T., & Riazuddin, S. (2008). Biotechnology Advances, 26, 202–209.

    Article  Google Scholar 

  17. Romano, N., & Macino, G. (1992). Molecular Microbiology, 6, 3343–3353.

    Article  CAS  Google Scholar 

  18. Rappleye, C. A., Engle, J. T., & Goldman, W. E. (2004). Molecular Microbiology, 53, 153–165.

    Article  CAS  Google Scholar 

  19. Janus, D., Hoff, B., Hofmann, E., & Kück, U. (2007). Applied and Environmental Microbiology, 73, 962–970.

    Article  CAS  Google Scholar 

  20. Nakayashiki, H., & Nguyen, Q. B. (2008). Current Opinion in Microbiology, 11, 494–502.

    Article  CAS  Google Scholar 

  21. Imamura, K., Tsuyama, Y., Hirata, T., Shiraishi, S., Sakamoto, K., Yamada, O., Akita, O., & Shimoi, H. (2012). Applied and Environmental Microbiology, 78, 6996–7002.

    Article  CAS  Google Scholar 

  22. Inoue, H., Fujii, T., Yoshimi, M., Taylor, L. E., II, Decker, S. R., Kishishita, S., Nakabayashi, M., & Ishikawa, K. (2013). Journal of Industrial Microbiology and Biotechnology, 40, 823–830.

    Article  CAS  Google Scholar 

  23. Yuen, K. Y., Pascal, G., Wong, S. S., Glaser, P., Woo, P. C., Kunst, F., Cai, J. J., Cheung, E. Y., Médigue, C., & Danchin, A. (2003). Archives of Microbiology, 179, 339–353.

    CAS  Google Scholar 

  24. Kistler, H. C., & Benny, U. (1992). Gene, 117, 81–89.

    Article  CAS  Google Scholar 

  25. Fujii, T., Murakami, K., & Sawayama, S. (2010). Bioscience, Biotechnology, and Biochemistry, 74, 419–422.

    Article  CAS  Google Scholar 

  26. Fujii, T., Inoue, H., & Ishikawa, K. (2013). AMB Express, 3(73), 1–9.

    Google Scholar 

  27. Guangtao, Z., Hartl, L., Schuster, A., Polak, S., Schmoll, M., Wang, T. H., Seidl, V., & Seiboth, B. (2009). Journal of Biotechnology, 139, 146–151.

    Article  CAS  Google Scholar 

  28. Maruyama, J., & Kitamoto, K. (2008). Biotechnology Letters, 30, 1811–1817.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Sawayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayata, K., Asada, S., Fujii, T. et al. Gene Targeting by RNAi-Mediated Knockdown of Potent DNA Ligase IV Homologue in the Cellulase-Producing Fungus Talaromyces cellulolyticus . Appl Biochem Biotechnol 174, 1697–1704 (2014). https://doi.org/10.1007/s12010-014-1142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1142-5

Keywords