Skip to main content

Antimicrobial and Antioxidant Activities of Clove Essential Oil and Eugenyl Acetate Produced by Enzymatic Esterification

Abstract

This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates’ molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Paoli, S., Giani, T. S., Presta, G. A., Pereira, M. P., Fonseca, A. S., Brandão Neto, J., et al. (2007). Brazilian Archives of Biology and Technology, 50, 175–182.

    Article  Google Scholar 

  2. Guenette, S. A., Rodd, A., Marier, J. F., Beaudry, F., & Vachon, P. (2007). European Journal of Pharmacology, 562, 60–67.

    CAS  Article  Google Scholar 

  3. Guenette, S. A., Helie, P., Beaudry, F., & Vachon, P. (2007). Veterinary Anaesthesia and Analgesia, 34, 164–170.

    CAS  Article  Google Scholar 

  4. Affonso, R. S., Rennó, M. N., Slana, G. B. C. A., & França, T. C. C. (2012). Revista Virtual de Química, 4, 146–161.

    CAS  Article  Google Scholar 

  5. Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nabki, A. B., Rouabhia, M., Mahdouani, K., et al. (2007). Phytotherapy Research, 21, 501–506.

    CAS  Article  Google Scholar 

  6. Chiaradia, V., Paroul, N., Cansian, R. L., Júnior, C. V., Detofol, M. R., Lerin, L. A., et al. (2012). Applied Biochemistry and Biotechnology, 168, 742–751.

    CAS  Article  Google Scholar 

  7. Silvestri, J. D. F., Paroul, N., Czyewski, E., Lerin, L., Rotava, I., Cansian, R. L., et al. (2010). Revista Ceres, 57, 589–594.

    CAS  Article  Google Scholar 

  8. Scherer, R., Wagner, R., Duarte, M. C. T., & Godoy, H. T. (2009). Brazilian Journal of Medicinal Plants, 11, 442–449.

    CAS  Google Scholar 

  9. Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2011). Bioprocess and Biosystems Engineering, 34, 331–337.

    CAS  Article  Google Scholar 

  10. Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2010). Journal of Chemical Technology and Biotechnology, 85, 1636–1641.

    CAS  Article  Google Scholar 

  11. Liaw, E. T., & Liu, K. J. (2010). Bioresource Technology, 101, 3320–3324.

    CAS  Article  Google Scholar 

  12. Aguedo, M., Belo, I., Ly, M. H., Teixeira, J. A., Belin, J. M., & Waché, Y. (2004). Food Technology and Biotechnology, 42, 327–336.

    CAS  Google Scholar 

  13. Bartling, K., Thompson, J. U. S., Pfromm, P. H., Czermak, P., & Rezac, M. E. (2001). Biotechnology and Bioengineering, 75, 676–681.

    CAS  Article  Google Scholar 

  14. Valério, A., Fiametti, K. G., Rovani, S., Franceschi, E., Corazza, M. L., Treichel, H., et al. (2009). Journal of Supercritical Fluids, 49, 216–220.

    Article  Google Scholar 

  15. Yang, T., Rebsdorf, M., Engelrud, U., & Xu, X. (2005). Journal of Agricultural and Food Chemistry, 53, 1475–1481.

    CAS  Article  Google Scholar 

  16. Watanabe, T., Shimizu, M., Sugiura, M., Sato, M., Kohori, J., Yamada, N., et al. (2003). Journal of the American Oil Chemists Society, 80, 1201–1207.

    CAS  Article  Google Scholar 

  17. Karra-Châabouni, M., Ghamghi, H., Bezzine, S., Rekik, A., & Gargouri, Y. (2006). Process Biochemistry, 41, 1692–1698.

    Article  Google Scholar 

  18. Horchani, H., Salem, N. B., Zarai, Z., Sayari, A., Gargouri, Y., & Chaâbouni, M. (2010). Bioresource Technology, 101, 2809–2817.

    CAS  Article  Google Scholar 

  19. Chaibakhsh, N., Basri, M., Anuar, S. H. M., Rahman, M. B. A., & Rezayee, M. (2012). Biocatalysis and Agricultural Biotechnology, 1, 226–231.

    CAS  Article  Google Scholar 

  20. Yadav, G. D., & Yadav, A. R. (2012). Chemical Engineering Journal, 192, 146–155.

    CAS  Article  Google Scholar 

  21. Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2011). Applied Biochemistry and Biotechnology, 166, 13–21.

    Article  Google Scholar 

  22. Katzung, B. G. (2003). Farmacologia Básica e Clínica (8th ed.). Koogan: Rio de Janeiro – Guanabara.

    Google Scholar 

  23. Holley, R. A., & Patel, D. (2005). Food Microbiology, 22, 273–292.

    CAS  Article  Google Scholar 

  24. Klancnik, A., Piskernik, S., Jersek, B., & Mozina, S. S. (2010). Journal of Microbiological Methods, 81, 121–126.

    CAS  Article  Google Scholar 

  25. Dorman, H. J. D., & Deans, S. G. (2000). Journal of Applied Microbiology, 88, 308–316.

    CAS  Article  Google Scholar 

  26. Lachowicz, K. J., Jones, G. P., Briggs, D. R., Bienvenu, F. E., Wan, J., Wilcock, A., et al. (1998). Letters in Applied Microbiology, 26, 209–214.

    CAS  Article  Google Scholar 

  27. Pei, R. S., Zhou, F., Ji, B. P., & Xu, J. (2009). Journal of Food Science, 74, 379–383.

    Article  Google Scholar 

  28. Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). Applied and Environmental Microbiology, 68, 1561–1568.

    CAS  Article  Google Scholar 

  29. Burt, S. A. (2004). International Journal of Food Microbiology, 94, 223–253.

    CAS  Article  Google Scholar 

  30. Skandamis, P., Tsigarida, E., & Nychas, G. J. E. (2002). Food Microbiology, 19, 97–103.

    CAS  Article  Google Scholar 

  31. Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., et al. (2001). Phytotherapy Research, 15, 127–130.

    CAS  Article  Google Scholar 

  32. Ramalho, V. C., & Jorge, N. (2006). Quimica Nova, 29, 755–760.

    CAS  Article  Google Scholar 

  33. Balasundram, N., Sundram, K., & Samman, S. (2006). Food Chemistry, 99, 191–203.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors thank the CNPq, CAPES, FAPERGS, and SCIT-RS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Oliveira.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vanin, A.B., Orlando, T., Piazza, S.P. et al. Antimicrobial and Antioxidant Activities of Clove Essential Oil and Eugenyl Acetate Produced by Enzymatic Esterification. Appl Biochem Biotechnol 174, 1286–1298 (2014). https://doi.org/10.1007/s12010-014-1113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1113-x

Keywords

  • Eugenyl acetate
  • Novozym 435
  • Antimicrobial activity
  • Antioxidant activity
  • Essential oil of clove
  • Esterification