Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1286–1298 | Cite as

Antimicrobial and Antioxidant Activities of Clove Essential Oil and Eugenyl Acetate Produced by Enzymatic Esterification

  • Adriana B. Vanin
  • Tainara Orlando
  • Suelen P. Piazza
  • Bruna M. S. Puton
  • Rogério L. Cansian
  • Debora OliveiraEmail author
  • Natalia Paroul
Article

Abstract

This work reports the maximization of eugenyl acetate production by esterification of essential oil of clove in a solvent-free system using Novozym 435 as catalyst. The antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced were determined. The conditions that maximized eugenyl acetate production were 60 °C, essential oil of clove to acetic anhydride ratio of 1:5, 150 rpm, and 10 wt% of enzyme, with a conversion of 99.87 %. A kinetic study was performed to assess the influence of substrates’ molar ratio, enzyme concentration, and temperature on product yield. Results show that an excess of anhydride, enzyme concentration of 5.5 wt%, 50 °C, and essential oil of clove to acetic anhydride ratio of 1:5 afforded nearly a complete conversion after 2 h of reaction. Comparing the antibacterial activity of the essential oil of clove before and after esterification, we observed a decrease in the antimicrobial activity of eugenyl acetate, particularly with regard to minimum inhibitory concentration (MIC). Both eugenyl acetate and clove essential oil were most effective to the gram-negative than gram-positive bacteria group. The results showed a high antioxidant potential for essential oil before and particularly after the esterification reaction thus becoming an option for the formulation of new antioxidant products.

Keywords

Eugenyl acetate Novozym 435 Antimicrobial activity Antioxidant activity Essential oil of clove Esterification 

Notes

Acknowledgments

The authors thank the CNPq, CAPES, FAPERGS, and SCIT-RS for financial support.

References

  1. 1.
    Paoli, S., Giani, T. S., Presta, G. A., Pereira, M. P., Fonseca, A. S., Brandão Neto, J., et al. (2007). Brazilian Archives of Biology and Technology, 50, 175–182.CrossRefGoogle Scholar
  2. 2.
    Guenette, S. A., Rodd, A., Marier, J. F., Beaudry, F., & Vachon, P. (2007). European Journal of Pharmacology, 562, 60–67.CrossRefGoogle Scholar
  3. 3.
    Guenette, S. A., Helie, P., Beaudry, F., & Vachon, P. (2007). Veterinary Anaesthesia and Analgesia, 34, 164–170.CrossRefGoogle Scholar
  4. 4.
    Affonso, R. S., Rennó, M. N., Slana, G. B. C. A., & França, T. C. C. (2012). Revista Virtual de Química, 4, 146–161.CrossRefGoogle Scholar
  5. 5.
    Chaieb, K., Hajlaoui, H., Zmantar, T., Kahla-Nabki, A. B., Rouabhia, M., Mahdouani, K., et al. (2007). Phytotherapy Research, 21, 501–506.CrossRefGoogle Scholar
  6. 6.
    Chiaradia, V., Paroul, N., Cansian, R. L., Júnior, C. V., Detofol, M. R., Lerin, L. A., et al. (2012). Applied Biochemistry and Biotechnology, 168, 742–751.CrossRefGoogle Scholar
  7. 7.
    Silvestri, J. D. F., Paroul, N., Czyewski, E., Lerin, L., Rotava, I., Cansian, R. L., et al. (2010). Revista Ceres, 57, 589–594.CrossRefGoogle Scholar
  8. 8.
    Scherer, R., Wagner, R., Duarte, M. C. T., & Godoy, H. T. (2009). Brazilian Journal of Medicinal Plants, 11, 442–449.Google Scholar
  9. 9.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2011). Bioprocess and Biosystems Engineering, 34, 331–337.CrossRefGoogle Scholar
  10. 10.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2010). Journal of Chemical Technology and Biotechnology, 85, 1636–1641.CrossRefGoogle Scholar
  11. 11.
    Liaw, E. T., & Liu, K. J. (2010). Bioresource Technology, 101, 3320–3324.CrossRefGoogle Scholar
  12. 12.
    Aguedo, M., Belo, I., Ly, M. H., Teixeira, J. A., Belin, J. M., & Waché, Y. (2004). Food Technology and Biotechnology, 42, 327–336.Google Scholar
  13. 13.
    Bartling, K., Thompson, J. U. S., Pfromm, P. H., Czermak, P., & Rezac, M. E. (2001). Biotechnology and Bioengineering, 75, 676–681.CrossRefGoogle Scholar
  14. 14.
    Valério, A., Fiametti, K. G., Rovani, S., Franceschi, E., Corazza, M. L., Treichel, H., et al. (2009). Journal of Supercritical Fluids, 49, 216–220.CrossRefGoogle Scholar
  15. 15.
    Yang, T., Rebsdorf, M., Engelrud, U., & Xu, X. (2005). Journal of Agricultural and Food Chemistry, 53, 1475–1481.CrossRefGoogle Scholar
  16. 16.
    Watanabe, T., Shimizu, M., Sugiura, M., Sato, M., Kohori, J., Yamada, N., et al. (2003). Journal of the American Oil Chemists Society, 80, 1201–1207.CrossRefGoogle Scholar
  17. 17.
    Karra-Châabouni, M., Ghamghi, H., Bezzine, S., Rekik, A., & Gargouri, Y. (2006). Process Biochemistry, 41, 1692–1698.CrossRefGoogle Scholar
  18. 18.
    Horchani, H., Salem, N. B., Zarai, Z., Sayari, A., Gargouri, Y., & Chaâbouni, M. (2010). Bioresource Technology, 101, 2809–2817.CrossRefGoogle Scholar
  19. 19.
    Chaibakhsh, N., Basri, M., Anuar, S. H. M., Rahman, M. B. A., & Rezayee, M. (2012). Biocatalysis and Agricultural Biotechnology, 1, 226–231.CrossRefGoogle Scholar
  20. 20.
    Yadav, G. D., & Yadav, A. R. (2012). Chemical Engineering Journal, 192, 146–155.CrossRefGoogle Scholar
  21. 21.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2011). Applied Biochemistry and Biotechnology, 166, 13–21.CrossRefGoogle Scholar
  22. 22.
    Katzung, B. G. (2003). Farmacologia Básica e Clínica (8th ed.). Koogan: Rio de Janeiro – Guanabara.Google Scholar
  23. 23.
    Holley, R. A., & Patel, D. (2005). Food Microbiology, 22, 273–292.CrossRefGoogle Scholar
  24. 24.
    Klancnik, A., Piskernik, S., Jersek, B., & Mozina, S. S. (2010). Journal of Microbiological Methods, 81, 121–126.CrossRefGoogle Scholar
  25. 25.
    Dorman, H. J. D., & Deans, S. G. (2000). Journal of Applied Microbiology, 88, 308–316.CrossRefGoogle Scholar
  26. 26.
    Lachowicz, K. J., Jones, G. P., Briggs, D. R., Bienvenu, F. E., Wan, J., Wilcock, A., et al. (1998). Letters in Applied Microbiology, 26, 209–214.CrossRefGoogle Scholar
  27. 27.
    Pei, R. S., Zhou, F., Ji, B. P., & Xu, J. (2009). Journal of Food Science, 74, 379–383.CrossRefGoogle Scholar
  28. 28.
    Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). Applied and Environmental Microbiology, 68, 1561–1568.CrossRefGoogle Scholar
  29. 29.
    Burt, S. A. (2004). International Journal of Food Microbiology, 94, 223–253.CrossRefGoogle Scholar
  30. 30.
    Skandamis, P., Tsigarida, E., & Nychas, G. J. E. (2002). Food Microbiology, 19, 97–103.CrossRefGoogle Scholar
  31. 31.
    Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., et al. (2001). Phytotherapy Research, 15, 127–130.CrossRefGoogle Scholar
  32. 32.
    Ramalho, V. C., & Jorge, N. (2006). Quimica Nova, 29, 755–760.CrossRefGoogle Scholar
  33. 33.
    Balasundram, N., Sundram, K., & Samman, S. (2006). Food Chemistry, 99, 191–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Adriana B. Vanin
    • 1
  • Tainara Orlando
    • 1
  • Suelen P. Piazza
    • 1
  • Bruna M. S. Puton
    • 1
  • Rogério L. Cansian
    • 1
  • Debora Oliveira
    • 2
    Email author
  • Natalia Paroul
    • 1
  1. 1.Department of Food EngineeringURI—Campus de ErechimErechimBrazil
  2. 2.Department of Chemical and Food EngineeringUniversidade Federal de Santa Catarina, UFSCFlorianópolisBrazil

Personalised recommendations