Abstract
The aim of this work was to study oxygen transfer as a function of the initial moisture content in solid-state cultivation under controlled moisture conditions. The use of controlled moisture conditions prevents drastic changes in the medium during cultivation, allowing the use of a pseudo-steady-state model to estimate the overall oxygen mass transfer coefficient (K L a) in the biofilm around the solid particles. Drechslera (Helminthosporium) monoceras, an aerobic mold that produces allergenic proteins, was cultured on wheat bran in a packed bed column bioreactor. The bed height (30 mm) and air flow rate (0.4 L/min) were selected to implement moisture control. The results show that there is an optimal moisture content (35 %) at which a lower biofilm thickness and packing of the bed improves K L a. However, a higher biomass growth was obtained at 45 % moisture. The different patterns of biomass growth demonstrate the importance of the balance between aerial and film growth in solid-state cultivation. These results contribute to the understanding of oxygen transfer in solid fermentation, optimization of processes, and production of allergen extracts from D. (Helminthosporium) monoceras biomass.
This is a preview of subscription content, access via your institution.







Abbreviations
- φ :
-
Bed porosity (%)
- ρ bulk :
-
Bulk density (g/cm3)
- ρ real :
-
Solid real density (g/cm3)
- C * :
-
Equilibrium oxygen concentration [mol/m3]
- C G :
-
Oxygen concentration in gas phase [mol/m3]
- C L :
-
Oxygen concentration in liquid film [mg/L]
- \( {D}_{{\mathrm{O}}_2,\ \mathrm{L}} \) :
-
Oxygen diffusivity in liquid phase [m2/s]
- F :
-
Air flow rate [L/min]
- K L a :
-
Overall oxygen transfer coefficient [s−1]
- N :
-
Overall oxygen transfer rate [mol/s m3]
- R 1 :
-
Radius of solid particle alone [mm]
- R 2 :
-
Radius of solid particle with the surrounding liquid film [mm]
- \( {R}_{{\mathrm{O}}_2} \) :
-
Oxygen consumption rate per biofilm volume [mol/s m3]
- V S :
-
Volume of solid medium [m3]
References
Ooijkaas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., & Rinzema, A. (2002). Trends in Biotechnology, 18, 355–360.
Pandey, A. (2003). Biochemical Engineering Journal, 13, 81–84.
Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Biochemical Engineering Journal, 44, 13–18.
Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Biochemical Engineering Journal, 13, 127–135.
Rokem, S. (1984). In H. W. Doelle, S. Rokem, & M. Berovic (Eds.), Biotechnology, vol. 6: industrial mycology (pp. 75–97). Oxford: Eolss.
Lekanda, J. S., & Pérez-Correa, J. R. (2004). Process Biochemistry, 39, 1793–1802.
Gowthaman, M. K., Raghava Rao, K. S., & Karanth, N. G. (1993). Biotechnology Advances, 11, 611–620.
Oostra, J., Le Comte, E. P., Van Der Heuvel, J. C., Tramper, J., & Rinzema, A. (2001). Biotechnology and Bioengineering, 75, 13–24.
Roopesh, K., Ramachandran, S., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2006). Bioresource Technology, 97, 506–511.
Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2013). Industrial Crops and Products, 42, 236–242.
Rodríguez-Fernández, D. E., Rodríguez-León, J. A., De Carvalho, J. C., Karp, S. G., Sturm, W., Parada, J. L., & Soccol, C. R. (2012). Bioresource Technology, 118, 603–606.
Gowthaman, M. K., Raghava Rao, K. S. M. S., Ghidyal, N. P., & Karanth, N. G. (1995). Process Biochemistry, 30, 9–15.
Thibault, J., Pouliot, K., Agosin, E., & Pérez-Correa, R. (2000). Process Biochemistry, 36, 9–18.
Rahardjo, Y. S. P., Weber, F. J., Paul Le Comte, E., Tramper, J., & Rinzema, A. (2002). Biotechnology and Bioengineering, 78, 539–544.
Hasan, S. D. M., Zolner, R., & Santana, M. H. A. (2003). Applied Biochemistry and Biotechnology, 106, 403–412.
Menezes, E. A., Gambale, W., Macedo, M., Abdalla, D., Paula, C. R., & Croce, J. (1995). Mycopathology, 131, 75–81.
Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.
Perez-Garcia, O., de-Bashan, L. E., Hernandez, J. P., & Bashan, Y. (2010). Journal of Phycology, 46, 800–812.
Shojaosadati, S. A., & Babaeipour, V. (2002). Process Biochemistry, 37, 909–914.
Acknowledgments
The authors gratefully acknowledge Prof. Walderez Gamballe, who generously provided the fungus strain, and the Brazilian agencies CNPq and CAPES in addition to the State University of Campinas (UNICAMP).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bastos, R.G., Motta, F.L. & Santana, M.H.A. Oxygen Transfer in Solid-State Cultivation Under Controlled Moisture Conditions. Appl Biochem Biotechnol 174, 708–718 (2014). https://doi.org/10.1007/s12010-014-1101-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-014-1101-1
Keywords
- Solid-state cultivation
- Drechslera (Helminthosporium) monoceras
- Oxygen transfer
- K L a
- Packed bed bioreactor
- Wheat bran