Skip to main content

Oxygen Transfer in Solid-State Cultivation Under Controlled Moisture Conditions


The aim of this work was to study oxygen transfer as a function of the initial moisture content in solid-state cultivation under controlled moisture conditions. The use of controlled moisture conditions prevents drastic changes in the medium during cultivation, allowing the use of a pseudo-steady-state model to estimate the overall oxygen mass transfer coefficient (K L a) in the biofilm around the solid particles. Drechslera (Helminthosporium) monoceras, an aerobic mold that produces allergenic proteins, was cultured on wheat bran in a packed bed column bioreactor. The bed height (30 mm) and air flow rate (0.4 L/min) were selected to implement moisture control. The results show that there is an optimal moisture content (35 %) at which a lower biofilm thickness and packing of the bed improves K L a. However, a higher biomass growth was obtained at 45 % moisture. The different patterns of biomass growth demonstrate the importance of the balance between aerial and film growth in solid-state cultivation. These results contribute to the understanding of oxygen transfer in solid fermentation, optimization of processes, and production of allergen extracts from D. (Helminthosporium) monoceras biomass.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


φ :

Bed porosity (%)

ρ bulk :

Bulk density (g/cm3)

ρ real :

Solid real density (g/cm3)

C * :

Equilibrium oxygen concentration [mol/m3]

C G :

Oxygen concentration in gas phase [mol/m3]

C L :

Oxygen concentration in liquid film [mg/L]

\( {D}_{{\mathrm{O}}_2,\ \mathrm{L}} \) :

Oxygen diffusivity in liquid phase [m2/s]

F :

Air flow rate [L/min]

K L a :

Overall oxygen transfer coefficient [s−1]

N :

Overall oxygen transfer rate [mol/s m3]

R 1 :

Radius of solid particle alone [mm]

R 2 :

Radius of solid particle with the surrounding liquid film [mm]

\( {R}_{{\mathrm{O}}_2} \) :

Oxygen consumption rate per biofilm volume [mol/s m3]

V S :

Volume of solid medium [m3]


  1. Ooijkaas, L. P., Weber, F. J., Buitelaar, R. M., Tramper, J., & Rinzema, A. (2002). Trends in Biotechnology, 18, 355–360.

    Google Scholar 

  2. Pandey, A. (2003). Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  3. Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Biochemical Engineering Journal, 44, 13–18.

    Article  CAS  Google Scholar 

  4. Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  5. Rokem, S. (1984). In H. W. Doelle, S. Rokem, & M. Berovic (Eds.), Biotechnology, vol. 6: industrial mycology (pp. 75–97). Oxford: Eolss.

    Google Scholar 

  6. Lekanda, J. S., & Pérez-Correa, J. R. (2004). Process Biochemistry, 39, 1793–1802.

    Article  CAS  Google Scholar 

  7. Gowthaman, M. K., Raghava Rao, K. S., & Karanth, N. G. (1993). Biotechnology Advances, 11, 611–620.

    Article  CAS  Google Scholar 

  8. Oostra, J., Le Comte, E. P., Van Der Heuvel, J. C., Tramper, J., & Rinzema, A. (2001). Biotechnology and Bioengineering, 75, 13–24.

    Article  CAS  Google Scholar 

  9. Roopesh, K., Ramachandran, S., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2006). Bioresource Technology, 97, 506–511.

    Article  CAS  Google Scholar 

  10. Delabona, P. D. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2013). Industrial Crops and Products, 42, 236–242.

    Article  CAS  Google Scholar 

  11. Rodríguez-Fernández, D. E., Rodríguez-León, J. A., De Carvalho, J. C., Karp, S. G., Sturm, W., Parada, J. L., & Soccol, C. R. (2012). Bioresource Technology, 118, 603–606.

    Article  Google Scholar 

  12. Gowthaman, M. K., Raghava Rao, K. S. M. S., Ghidyal, N. P., & Karanth, N. G. (1995). Process Biochemistry, 30, 9–15.

    Article  CAS  Google Scholar 

  13. Thibault, J., Pouliot, K., Agosin, E., & Pérez-Correa, R. (2000). Process Biochemistry, 36, 9–18.

    Article  CAS  Google Scholar 

  14. Rahardjo, Y. S. P., Weber, F. J., Paul Le Comte, E., Tramper, J., & Rinzema, A. (2002). Biotechnology and Bioengineering, 78, 539–544.

    Article  Google Scholar 

  15. Hasan, S. D. M., Zolner, R., & Santana, M. H. A. (2003). Applied Biochemistry and Biotechnology, 106, 403–412.

    Article  Google Scholar 

  16. Menezes, E. A., Gambale, W., Macedo, M., Abdalla, D., Paula, C. R., & Croce, J. (1995). Mycopathology, 131, 75–81.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Perez-Garcia, O., de-Bashan, L. E., Hernandez, J. P., & Bashan, Y. (2010). Journal of Phycology, 46, 800–812.

    Article  CAS  Google Scholar 

  19. Shojaosadati, S. A., & Babaeipour, V. (2002). Process Biochemistry, 37, 909–914.

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge Prof. Walderez Gamballe, who generously provided the fungus strain, and the Brazilian agencies CNPq and CAPES in addition to the State University of Campinas (UNICAMP).

Author information

Authors and Affiliations


Corresponding author

Correspondence to M. H. A. Santana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bastos, R.G., Motta, F.L. & Santana, M.H.A. Oxygen Transfer in Solid-State Cultivation Under Controlled Moisture Conditions. Appl Biochem Biotechnol 174, 708–718 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Solid-state cultivation
  • Drechslera (Helminthosporium) monoceras
  • Oxygen transfer
  • K L a
  • Packed bed bioreactor
  • Wheat bran