Skip to main content
Log in

In Silico Analysis of DREB Transcription Factor Genes and Proteins in Grasses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants are exposed to various environmental stresses, including drought, salinity, low temperature, etc. Dehydration responsive element binding (DREB) genes, the members of AP2/ERF transcription factor family, regulate the biological processes against cold and dehydration stresses. In this study, we analyzed a total of 19 DREB transcription factor genes and proteins from 14 grass species by using bioinformatic approaches, including their physiochemical properties, conserved motif structures, homology models, and phylogenetic relationships. The domain analysis showed that all grass species contained an AP2 domain whereas some residual substitutions and/or insertions were observed in the AP2 domains of some grasses. The physiochemical analysis revealed that many DREB proteins (89.5 %) were of acidic character while the number of amino acids ranged from 213 (Aegilops speltoides subsp. speltoides) to 394 (Triticum aestivum). Based on the subcellular prediction, 16 of 19 DREB proteins were predicted to be localized in the nuclear region. According to the sequence analysis of grass DREBs, the average value of pairwise distance was found to be 0.588, while nucleotide diversity (π) was found to be 0.435. Thus, among all DREB proteins, two most divergent ones (Oryza sativa and Avena sativa) were selected for 3D structure and protein cavity comparison. In addition, 19 DREB proteins were analyzed according to their phylogenetic relationships, and as a consequence, two main groups were observed. In this study, our analyses could be a scientific base to understand DREB genes and proteins to further wet lab studies in plants, particularly in grass species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DREB:

Dehydration responsive element binding

AP2:

Apetala2

LTRE:

Low-temperature-responsive element

CBF:

C-repeat binding factor

References

  1. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Annual Review of Plant Biology, 57, 781–803.

    Article  CAS  Google Scholar 

  2. Knight, H., & Knight, M. R. (2001). Trends in Plant Science, 6, 262–267.

    Article  CAS  Google Scholar 

  3. Lata, C., & Prasad, M. (2011). Journal of Experimental Botany, 14, 4731–4748.

    Article  Google Scholar 

  4. Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Current Opinion in Plant Biology, 5, 410–417.

    Article  Google Scholar 

  5. Agarwal, P. K., Agarwal, P., Reddy, M. K., & Sopory, S. K. (2006). Plant Cell Reports, 25, 1263–1274.

    Article  CAS  Google Scholar 

  6. Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). The Plant Cell, 18, 1292–1309.

    Article  CAS  Google Scholar 

  7. Stockinger, E. J., Gilmour, S. J., & Thomashow, M. F. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 1035–1040.

    Article  CAS  Google Scholar 

  8. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Plant Cell, 10, 1391–1406.

    Article  CAS  Google Scholar 

  9. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 1988–1993.

    Article  CAS  Google Scholar 

  10. Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Plant Physiology, 149, 88–95.

    Article  CAS  Google Scholar 

  11. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., & Yamaguchi–Shinozaki, K. (2002). Biochemical and Biophysical Research Communications, 290, 998–1009.

    Article  CAS  Google Scholar 

  12. Timothy, L., Mikael Bodén, B., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). Nucleic Acids Research, 37, 202–208.

    Article  Google Scholar 

  13. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., et al. (2005). Protein identification and analysis tools on the ExPASy server, In: John M. Walker (ed): The Proteomics Protocols Handbook Humana, 571–607.

  14. Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, K. (2006). Proteins: Structure Function and Bioinformatics, 64, 643–651.

    Article  CAS  Google Scholar 

  15. Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). Nucleic Acids Research. doi:10.1093/nar/gkm259.

    Google Scholar 

  16. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  17. Schneider, T. D., & Stephens, R. M. (1990). Nucleic Acids Research, 18, 6097–6100.

    Article  CAS  Google Scholar 

  18. Crooks, G. E., Hon, G., Chandonia, J. M., & Brenner, S. E. (2004). Genome Research, 14, 1188–1190.

    Article  CAS  Google Scholar 

  19. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  20. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  21. Felsenstein, J. (1985). Evolution, 39, 783–791.

    Article  Google Scholar 

  22. Tajima, F. (1989). Genetics, 123, 585–595.

    CAS  Google Scholar 

  23. Tamura, K., Nei, M., & Kumar, S. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.

    Article  CAS  Google Scholar 

  24. Tamura, K., & Nei, M. (1993). Molecular Biology and Evolution, 10, 512–526.

    CAS  Google Scholar 

  25. Buchan, D. W. A., Minneci, F., Nugent, T. C. O., Bryson, K., & Jones, D. T. (2013). Nucleic Acids Research, 41, 340–348.

    Article  Google Scholar 

  26. Lovell, S. C., Davis, I. W., Arendall, W. B., Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Proteins: Structure Function and Genetics, 50, 437–450.

    Article  CAS  Google Scholar 

  27. Guex, N., & Peitsch, M. C. (1997). Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  28. Reineke, A. R., Bornberg-Bauer, E., & Gu, J. (2011). Nucleic Acids Research, 39, 6029–6043.

    Article  CAS  Google Scholar 

  29. Rosenberg, M. S., Subramanian, S., & Kumar, S. (2003). Patterns of transitional mutation biases within and among mammalian genomes. Molecular Biology and Evolution, 20, 988–993.

    Article  CAS  Google Scholar 

  30. Nei, M., & Li, W. H. (1979). PNAS, 76, 5269–5273.

    Article  CAS  Google Scholar 

  31. Hao, D., Ohme-Takagi, M., & Sarai, A. (1998). The Journal of Biological Chemistry, 273, 26857–26861.

    Article  CAS  Google Scholar 

  32. Shigyo, M., Hasebe, M., & Ito, M. (2006). Gene, 366, 256–265.

    Article  CAS  Google Scholar 

  33. Falcon, C. M., & Matthews, K. S. (1999). Journal of Biological Chemistry, 274, 30849–30857.

    Article  CAS  Google Scholar 

  34. Watanabe, T. M., Imada, K., Yoshizawa, K., Nishiyama, M., Kato, C., Abe, F., & Yanagida, T. (2013). PLoS ONE, 8, e73212.

    Article  CAS  Google Scholar 

  35. Wang, S. X., Wang, Z. Y., & Peng, Y. K. (2004). Plant Physiology Communication, 40, 7–13.

    CAS  Google Scholar 

  36. Rayon, C., Lerouge, P., & Faye, L. (1998). Journal of Experimental Botany, 49, 1463–1472.

    Article  CAS  Google Scholar 

  37. Doebley, J., & Lukens, L. (1998). Plant Cell, 10, 1075–1082.

    Article  CAS  Google Scholar 

  38. Saleh, A., & Pagés, M. (2003). Genetika, 35, 37–50.

    Article  CAS  Google Scholar 

  39. Saito, H., Kashida, S., Inoue, T., & Inoue, K. (2007). Nucleic Acids Research, 35, 6357–6366.

    Article  CAS  Google Scholar 

  40. Bjorklund, A. K., Ekman, D., Light, S., Frey-Skott, J., & Elofsson, A. (2005). Journal of Molecular Biology, 353, 911–923.

    Article  Google Scholar 

  41. Hubbard, S. J., Gross, K. H., & Argos, P. (1994). Protein Engineering, 7, 613–626.

    Article  CAS  Google Scholar 

  42. Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P. V., & Subramaniam, S. (1998). Proteins: Structure Function and Genetics, 33, 18–29.

    Article  CAS  Google Scholar 

  43. Chen, J. Q., Meng, X. P., Zhang, Y., Xia, M., & Wang, X. P. (2008). Biotechnology Letters, 30, 2191–2198.

    Article  Google Scholar 

  44. Zhang, J. (2003). Trends in Ecology & Evolution, 18, 292–298.

    Article  Google Scholar 

  45. Cannon, S. B., Mitra, A., Baumgarten, A., Young, N. D., & May, G. (2004). BMC Plant Biology, 4, 53–62.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors confirm that the contents of this article have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertugrul Filiz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 201 kb)

High Resolution Image (TIFF 956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filiz, E., Tombuloğlu, H. In Silico Analysis of DREB Transcription Factor Genes and Proteins in Grasses. Appl Biochem Biotechnol 174, 1272–1285 (2014). https://doi.org/10.1007/s12010-014-1093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1093-x

Keywords

Navigation