Skip to main content
Log in

Performance and Bacterial Population Composition of an n-Hexane Degrading Biofilter Working Under Fluctuating Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, several conditions of pH and inlet load (IL) were applied to a scale laboratory biofilter treating n-hexane vapors during 143 days. During the first 79 days of operation (period 1, P1), the system was fed with neutral pH mineral medium (MM) and the IL was progressively decreased from 177 to 16 g m−3 h−1. A maximum elimination capacity (EC) of 30 g m−3 h−1 was obtained at an IL of 176.9 ± 9.8 g m−3 h−1. During the following 64 days (period 2, P2), acidic conditions were induced by feeding the biofilter with acidic buffer solution and pH 4 MM in order to evaluate the effect of bacterial community changes on EC. Within the acidic period, a maximum EC of 54 g m−3 h−1 (IL 132.3 ± 13 g m−3 h−1) was achieved. Sequence analysis of 16S rDNA genes amplified from the consortium revealed the presence of Sphingobacteria, Actinobacteria, and α-, β- and γ-Proteobacteria. An Actinobacteria of the Mycobacterium genus had presence throughout the whole experiment of biofiltration showing resistance to fluctuating pH and IL conditions. Batch tests confirm the bacterial predominance and a negligible contribution of fungi in the degradation of n-hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Environmental Protection Agency (EPA) (2007). n-Hexane, http://epa.gov/ttn/atw/hlthef.html. Accessed 25 March 2013.

  2. Gutierrez-Acosta, O. B., Arriaga, S., Escobar-Barrios, V. A., Casas-Flores, S., & Almendarez-Camarillo, A. (2012). Performance of innovative PU-foam and natural fiberbased composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm. Journal of Hazardous Materials, 201–202, 202–208.

    Article  Google Scholar 

  3. Muñoz, R., Arriaga, S., Hernández, S., Guieysse, B., & Revah, S. (2006). Enhanced hexane biodegradation in a two phase partitioning bioreactor: overcoming pollutant transport limitations. Process Biochemistry, 41, 1614–1619.

    Article  Google Scholar 

  4. Galindo, H., Revah, S., Cervantes, F. J., & Arriaga, S. (2011). Effect of surfactant and oil additions in the biodegradation of hexane and toluene vapors in batch tests. Environmental Technology, 32, 167–173.

    Article  CAS  Google Scholar 

  5. Hassan, A. A., & Sorial, G. A. (2010). Biofiltration of n-hexane in the presence of benzene vapors. Journal of Chemical Technology and Biotechnology, 85, 371–377.

    Article  CAS  Google Scholar 

  6. Zedraoui, A., Aly, H. A., & Sorial, G. A. (2012). Effect of methanol on the biofiltration of n-hexane. Journal of Hazardous Materials, 138, 543–548.

    Google Scholar 

  7. Arriaga, S., & Revah, S. (2005). Improving hexane removal by enhancing fungal development in a microbial consortium biofilter. Biotechnology and Bioengineering, 90, 107–115.

    Article  CAS  Google Scholar 

  8. Aizpuru, A., Dunat, B., Christen, P., Auria, R., García-Peña, I., & Revah, S. (2005). Fungal biofiltration of toluene on ceramic rings. Journal of Environmental Engineering, 131, 396–402.

    Article  CAS  Google Scholar 

  9. Prenafeta-Boldú, F. X., Summerbell, R., & de Hoog, G. S. (2006). Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiology Ecology, 30, 109–130.

    Article  Google Scholar 

  10. Barcón, T., Alonso-Gutiérrez, J., & Omil, F. (2012). Molecular and physiological approaches to understand the ecology of methanol degradation during the biofiltration of air streams. Chemosphere, 87, 1179–1185.

    Article  Google Scholar 

  11. Okunishi, S., Morita, Y., Higuchi, T., Maeda, H., & Nishi, K. (2012). Transformation of microflora during degradation of gaseous toluene in a biofilter detected using PCR-DGGE. Journal of the Air & Waste Management Association, 62, 748–757.

    Article  CAS  Google Scholar 

  12. Prenafeta-Boldú, F. X., Guivernau, M., Gallastegui, G., Viñas, M., de Hoog, G. S., & Elías, A. (2012). Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, etylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiology, 80, 722–734.

    Article  Google Scholar 

  13. Amouric, A., Verhé, F., Auria, R., & Casalot, L. (2006). Study of a hexane degrading consortium in a biofilter and in a liquid culture: biodiversity, kinetics, and characterization of degrading strains. FEMS Microbiology Ecology, 55, 239–247.

    Article  CAS  Google Scholar 

  14. Friedrich, M., & Lipski, A. (2010). Characterization of hexane-degrading microorganisms in a biofilter by stable isotope-based fatty acid analysis, FISH and cultivation. Applied Microbiology and Biotechnology, 85, 1189–1199.

    Article  CAS  Google Scholar 

  15. Sharefdeen, Z., & Singh, A. (2005). Biotechnology for odor and air pollution control (pp. 29–64). Berlin: Springer.

    Book  Google Scholar 

  16. García-Perez, T., Aizpuru, A., & Arriaga, S. (2013). By-passing acidification limitations during the biofiltration of highformaldehyde loads via the application of ozone pulses. Journal of Hazardous Materials, 262, 732–740.

    Article  Google Scholar 

  17. Gutierrez-Acosta, O., Escobar-Barrios, V., & Arriaga, S. (2010). Batch biodegradation of hydrocarbon vapors using a modified polymeric support. Journal of Chemical Technology and Biotechnology, 85, 410–415.

    Article  CAS  Google Scholar 

  18. Gabor, E. M., de Vries, E. J., & Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology, 44, 153–163.

    Article  CAS  Google Scholar 

  19. Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46, 327–338.

    Article  CAS  Google Scholar 

  20. Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.

    Article  CAS  Google Scholar 

  21. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  22. Vigueras, G., Arriaga, S., Shirai, K., Morales, M., & Revah, S. (2009). Hydrophobic response of the fungus Rhinocladiella similis in the biofiltration with volatile organic compounds with different polarity. Biotechnological Letters, 31, 1203–1209.

    Article  CAS  Google Scholar 

  23. Groesnetijn, J. W., & Lake, M. E. (1999). Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases. Environmental Progress, 18, 151–155.

    Article  Google Scholar 

  24. Hernández-Meléndez, O., Bárzana, E., Arriaga, S., Hernández-Luna, M., & Revah, S. (2008). Fungal removal of gaseous hexane in biofilters packed with poly (ethylene carbonate), pine sawdust or peat composites. Biotechnology and Bioengineering, 100, 864–871.

    Article  Google Scholar 

  25. Kibazohi, O., Yun, S., & Anderson, W. A. (2004). Removal of hexane in biofilters packed with perlite and a peat-perlite mixture. World Journal of Microbiology and Biotechnology, 20, 337–343.

    Article  CAS  Google Scholar 

  26. Wang, C., Kong, X., & Zhang, X. Y. (2012). Mesophilic and thermophilic biofiltration of gaseous toluene in a long-term operation: Performance evaluation, biomass accumulation, mass balance analysis and isolation identification. Journal of Hazardous Materials, 229–230, 94–99.

    Article  Google Scholar 

  27. Saucedo-Lucero, J. O., & Arriaga, S. (2013). Photocatalytic degradation of hexane vapors in batch and continuous systems using impregnated ZnO nanoparticles. Chemical Engineering Journal, 218, 358–367.

    Article  CAS  Google Scholar 

  28. Saadoun, I., Al-Akhras, M. A., & Abu-Ashour, J. (1999). Bacterial degradation of hydrocarbons as evidenced by respirometric analysis. Microbios, 100, 19–25.

    CAS  Google Scholar 

  29. Roy, S., Gendron, J., Delhomenie, M. C., Bibeau, L., Heitz, M., & Brzezinski, R. (2003). Pseudomonas putida as the dominant toluene-degrading bacterial species during air decontamination by biofiltration. Applied Microbiology and Biotechnology, 61, 366–373.

    Article  CAS  Google Scholar 

  30. Lee, E. H., Kim, J., Cho, K. S., Ahn, Y. G., & Hwang, G. H. (2009). Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate Rhodococcus sp. EH831. Environmental Science and Pollution Research, 17, 64–77.

    Article  Google Scholar 

  31. Vergara-Fernández, A., Van Haaren, B., & Revah, S. (2006). Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane. Biotechnological Letters, 28, 2011–2017.

    Article  Google Scholar 

  32. Mazumder, S., Falkinham, J. O., Dietrich, A. M., & Puri, I. K. (2009). Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling, 26, 333–339.

    Article  Google Scholar 

  33. Prenafeta-Boldú, F. X., Ortega, O., Arimany, M., & Canalias, F. (2012). Assessment of process limiting factors during the biofiltration of odorous VOCs in a full-scale composting plant. Compost Science and Utilization, 20, 73–78.

    Article  Google Scholar 

  34. Kiel, L. J., & Olson, F. N. (2000). The physicochemical surface characteristics of Lactobacillus casei. Food Microbiology, 17, 277–291.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank CONACYT for its financial support to Sonia Arriaga (SEP-CONACYT-CB-2009-133930 Grant). Edgardo Valenzuela Reyes is thankful to CONACYT for the Bachelor scholarship (Number: 17434). The use of the analytical infrastructure of LINAN and LANBAMA are also acknowledged. Special gratitude is expressed to M.Sc. Gladis Labrada, M.Sc. JP. Rodas, M.Sc. Dulce Partida, and M.Sc. Guillermo Vidriales for their technical assistance. We thank Dr. Aitor Aizpuru and Anne Jennifer Eckerly for their suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Arriaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela-Reyes, E., Casas-Flores, S., Isordia-Jasso, I. et al. Performance and Bacterial Population Composition of an n-Hexane Degrading Biofilter Working Under Fluctuating Conditions. Appl Biochem Biotechnol 174, 832–844 (2014). https://doi.org/10.1007/s12010-014-1079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1079-8

Keywords

Navigation