Skip to main content

Advertisement

Log in

Goat Activin Receptor Type IIB Knockdown by Artificial MicroRNAs In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Activin receptor type IIB (ACVR2B) has been known to negatively regulate the muscle growth through mediating the action of transforming growth factor beta superfamily ligands. Recently, the artificial microRNAs (amiRNAs) which are processed by endogenous miRNA processing machinery have been proposed as promising approach for efficient gene knockdown. We evaluated amiRNAs targeting goat ACVR2B in HEK293T and goat myoblasts cells. The amiRNAs were designed based on the miR-155 backbone and cloned in 5′- and 3′-UTR of GFP reporter gene under the CMV promoter. Although both 5′- and 3′-UTR-amiRNAs vectors showed efficient synthesis of GFP transcripts, amiRNAs in 5′-UTR drastically affected GFP protein synthesis in transfected goat myoblast cells. Among the four amiRNAs targeting ACVR2B derived from either 5′- or 3′-UTR, ami318 showed highest silencing efficiency against exogenously co-expressed ACVR2B in both 293T and goat myoblast cells whereas ami204 showed highest silencing efficiency against endogenous ACVR2B in goat myoblasts cells. The 3′-UTR-derived amiRNA exerted higher knockdown efficiency against endogenous ACVR2B at transcript level whereas 5′-UTR-derived amiRNAs exerted higher knockdown efficiency at protein level. The expression of ACVR2B showed positive correlation with the expression of MYOD (r = 0.744; p = 0.009) and MYOG (r = 0.959; p = 0.000) in the amiRNA-transfected myoblasts. Although both 5′- and 3′-UTR–amiRNA vectors led to substantial induction of interferon response, the magnitude of the response was found to be higher with the 3′-UTR–amiRNA vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amthor, H., Nicholas, G., McKinnell, I., Kemp, C. F., Sharma, M., Kambadur, R., & Patel, K. (2004). Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Developmental Biology, 270, 19–30.

    Article  CAS  Google Scholar 

  2. Baek, M. N., Jung, K. H., Halder, D., Choi, M. R., Lee, B. H., Lee, B. C., Jung, M. H., Choi, I. G., Chung, M. K., Oh, D. Y., & Chai, Y. G. (2010). Artificial microRNA-based neurokinin-1 receptor gene silencing reduces alcohol consumption in mice. Neuroscience Letters, 475, 124–128.

    Article  CAS  Google Scholar 

  3. Baquero-Perez, B., Kuchipudi, S. V., Nelli, R. K., & Chang, K. C. (2012). A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biology, 13, 16.

    Article  CAS  Google Scholar 

  4. Bentzinger, C. F., Wang, Y. X., & Rudnicki, M. A. (2012). Building muscle: Molecular regulation of myogenesis. Cold Spring Harbor Perspectives in Biology, 4, 1–16.

    Article  Google Scholar 

  5. Bhomia, M., Sharma, A., Gayen, M., Gupta, P., & Maheshwari, R. K. (2013). Artificial microRNAs can effectively inhibit replication of Venezuelan equine encephalitis virus. Antiviral Research, 100, 429–434.

    Article  CAS  Google Scholar 

  6. Boudreau, R. L., Martins, I., & Davidson, B. L. (2009). Artificial microRNAs as siRNA shuttles: Improved safety as compared to shRNAs in vitro and in vivo. Molecular therapy : The Journal of the American Society of Gene Therapy, 17, 169–175.

    Article  CAS  Google Scholar 

  7. Cadena, S. M., Tomkinson, K. N., Monnell, T. E., Spaits, M. S., Kumar, R., Underwood, K. W., Pearsall, R. S., & Lachey, J. L. (2010). Administration of a soluble activin type IIB receptor promotes skeletal muscle growth independent of fiber type. Journal of Applied Physiology, 109, 635–642.

    Article  CAS  Google Scholar 

  8. Du, G., Yonekubo, J., Zeng, Y., Osisami, M., & Frohman, M. A. (2006). Design of expression vectors for RNA interference based on miRNAs and RNA splicing. The FEBS Journal, 273, 5421–5427.

    Article  CAS  Google Scholar 

  9. Eamens, A. L., Agius, C., Smith, N. A., Waterhouse, P. M., & Wang, M. B. (2011). Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana. Molecular Plant, 4, 157–170.

    Article  CAS  Google Scholar 

  10. Gantier, M. P., & Williams, B. R. (2007). The response of mammalian cells to double-stranded RNA. Cytokine & Growth Factor Reviews, 18, 363–371.

    Article  CAS  Google Scholar 

  11. Giering, J. C., Grimm, D., Storm, T. A., & Kay, M. A. (2008). Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Molecular Therapy : The Journal of the American Society of Gene Therapy, 16, 1630–1636.

    Article  CAS  Google Scholar 

  12. Haidet, A. M., Rizo, L., Handy, C., Umapathi, P., Eagle, A., Shilling, C., Boue, D., Martin, P. T., Sahenk, Z., Mendell, J. R., & Kaspar, B. K. (2008). Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 105, 4318–4322.

    Article  CAS  Google Scholar 

  13. Hamrick, M. W., Arounleut, P., Kellum, E., Cain, M., Immel, D., & Liang, L. F. (2010). Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. Journal of Trauma, 69, 579–583.

    Article  CAS  Google Scholar 

  14. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.

    Article  CAS  Google Scholar 

  15. Hill, J. J., Davies, M. V., Pearson, A. A., Wang, J. H., Hewick, R. M., Wolfman, N. M., & Qiu, Y. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. The Journal of Biological Chemistry, 277, 40735–40741.

    Article  CAS  Google Scholar 

  16. Hirayama, E., Isobe, A., Okamoto, H., Nishioka, M., & Kim, J. (1997). Myogenin expression is necessary for commitment to differentiation and is closely related to src tyrosine kinase activity in quail myoblasts transformed with Rous sarcoma virus. European Journal of Cell Biology, 72, 133–141.

    CAS  Google Scholar 

  17. Hu, S., Ni, W., Sai, W., Zi, H., Qiao, J., Wang, P., Sheng, J., & Chen, C. (2013). Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PloS One, 8, e58521.

    Article  CAS  Google Scholar 

  18. Hu, T., Fu, Q., Chen, P., Ma, L., Sin, O., & Guo, D. (2009). Construction of an artificial MicroRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. International Journal of Molecular Sciences, 10, 2158–2168.

    Article  CAS  Google Scholar 

  19. Kozak, M. (2005). Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 361, 13–37.

    Article  CAS  Google Scholar 

  20. Lawlor, M. W., Read, B. P., Edelstein, R., Yang, N., Pierson, C. R., Stein, M. J., Wermer-Colan, A., Buj-Bello, A., Lachey, J. L., Seehra, J. S., & Beggs, A. H. (2011). Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice. The American Journal of Pathology, 178, 784–793.

    Article  CAS  Google Scholar 

  21. Lee, S. J., Reed, L. A., Davies, M. V., Girgenrath, S., Goad, M. E., Tomkinson, K. N., Wright, J. F., Barker, C., Ehrmantraut, G., Holmstrom, J., Trowell, B., Gertz, B., Jiang, M. S., Sebald, S. M., Matzuk, M., Li, E., Liang, L. F., Quattlebaum, E., Stotish, R. L., & Wolfman, N. M. (2005). Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences of the United States of America, 102, 18117–18122.

    Article  CAS  Google Scholar 

  22. Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., & Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal, 23, 4051–4060.

    Article  CAS  Google Scholar 

  23. Mastroyiannopoulos, N. P., Nicolaou, P., Anayasa, M., Uney, J. B., & Phylactou, L. A. (2012). Down-regulation of myogenin can reverse terminal muscle cell differentiation. PloS One, 7, e29896.

    Article  CAS  Google Scholar 

  24. Milazzotto, M. P., Goissis, M. D., Feitosa, W. B., Martins, L. F., Strauss, B. E., Bajgelman, M. C., Assumpcao, M. E., & Visintin, J. A. (2010). Myostatin gene knockdown through lentiviral-mediated delivery of shRNA for in vitro production of transgenic bovine embryos. Zygote, 18, 339–344.

    Article  CAS  Google Scholar 

  25. Miner, J. H., & Wold, B. J. (1991). c-myc inhibition of MyoD and myogenin-initiated myogenic differentiation. Molecular and Cellular Biology, 11, 2842–2851.

    CAS  Google Scholar 

  26. Oh, S. P., & Li, E. (1997). The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes & Development, 11, 1812–1826.

    Article  CAS  Google Scholar 

  27. Patel, A. K., Tripathi, A. K., Patel, U. A., Shah, R. K. and Joshi, C. G. (2014) Myostatin knockdown and its effect on myogenic gene expression program in stably transfected goat myoblasts. In vitro cellular & developmental biology. Animal.

  28. Patel, A. K., Tripathi, A. K., Shah, R. K., Patel, U. A., & Joshi, C. G. (2014). Assessment of goat activin receptor type IIB knockdown by short hairpin RNAs in vitro. Journal of Receptor and Signal Transduction Research, 28, 1–7.

    Article  CAS  Google Scholar 

  29. Rose, F. F., Jr., Mattis, V. B., Rindt, H., & Lorson, C. L. (2009). Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Human Molecular Genetics, 18, 997–1005.

    Article  CAS  Google Scholar 

  30. Sablok, G., Perez-Quintero, A. L., Hassan, M., Tatarinova, T. V., & Lopez, C. (2011). Artificial microRNAs (amiRNAs) engineering—On how microRNA-based silencing methods have affected current plant silencing research. Biochemical and Biophysical Research Communications, 406, 315–319.

    Article  CAS  Google Scholar 

  31. Shin, K. J., Wall, E. A., Zavzavadjian, J. R., Santat, L. A., Liu, J., Hwang, J. I., Rebres, R., Roach, T., Seaman, W., Simon, M. I., & Fraser, I. D. (2006). A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 13759–13764.

    Article  CAS  Google Scholar 

  32. Stewart, C. K., Li, J., & Golovan, S. P. (2008). Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochemical and Biophysical Research Communications, 370, 113–117.

    Article  CAS  Google Scholar 

  33. Sun, D., Melegari, M., Sridhar, S., Rogler, C. E., & Zhu, L. (2006). Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. BioTechniques, 41, 59–63.

    Article  CAS  Google Scholar 

  34. Tripathi, A. K., Aparnathi, M. K., Patel, A. K., & Joshi, C. G. (2013). In vitro silencing of myostatiin gene by shRNAs in chicken embryonic myoblast cells. Biotechnology Progress, 29, 425–431.

    Article  CAS  Google Scholar 

  35. Tripathi, A. K., Ramani, U. V., Ahir, V. B., Rank, D. N., & Joshi, C. G. (2010). A modified enrichment protocol for adult caprine skeletal muscle stem cell. Cytotechnology, 62, 483–488.

    Article  Google Scholar 

  36. Tripathi, A. K., Ramani, U. V., Patel, A. K., Rank, D. N., & Joshi, C. G. (2013). Short hairpin RNA-induced myostatin gene silencing in caprine myoblast cells in vitro. Applied Biochemistry and Biotechnology, 169, 688–694.

    Article  CAS  Google Scholar 

  37. Xiao, S., Wang, Q., Gao, J., Wang, L., He, Z., Mo, D., Liu, X., & Chen, Y. (2011). Inhibition of highly pathogenic PRRSV replication in MARC-145 cells by artificial microRNAs. Virology Journal, 8, 491.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank National Agriculture Innovation Project (NAIP), New Delhi, India, and Anand Agricultural University, Gujarat, India, for providing necessary funding to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya G. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.K., Shah, R.K., Parikh, I.K. et al. Goat Activin Receptor Type IIB Knockdown by Artificial MicroRNAs In Vitro. Appl Biochem Biotechnol 174, 424–436 (2014). https://doi.org/10.1007/s12010-014-1071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1071-3

Keywords

Navigation