Skip to main content
Log in

Antiglycating Potential of Gum Arabic Capped-Silver Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Advanced glycation end products are major contributors to the pathology of diabetes, Alzheimer’s disease, and atherosclerosis; accordingly, identification of antiglycation compounds is attracting considerable interest. In the present study, the inhibitory effect of gum arabic capped-silver nanoparticles on advanced glycation end products formation was monitored by several biophysical techniques. Silver nanoparticles were characterized by ultraviolet–visible, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Bovine serum albumin and methylglyoxal mixtures incubated with increasing concentrations of silver nanoparticles showed significant reductions in advanced glycation end product formation that were confirmed by ultraviolet–visible, fluorescence spectrometry, and high-performance liquid chromatography techniques. High-performance liquid chromatography showed decreased adduct formation of glycated protein in the presence of silver nanoparticles. The structural changes induced by silver nanoparticles were further confirmed by circular dichroism and Fourier transform infrared spectroscopy. Strong inhibition of advanced glycation end product formation was observed in the presence of elevated silver nanoparticles. The results of this study suggest that silver nanoparticles are a potent antiglycating agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maillard, L. C. (1912). Comptes Rendus, 154, 66–68.

    CAS  Google Scholar 

  2. Thorpe, S. R., & Baynes, J. W. (2003). Amino Acids, 25, 275–81.

    Article  CAS  Google Scholar 

  3. Selvin, E., Steffes, M. W., Zhu, H., et al. (2010). New England Journal of Medicine, 362, 800–11.

    Article  CAS  Google Scholar 

  4. Yan, S. D., Chen, X., Schmidt, A. M., et al. (1994). Proceedings of the National Academy of Sciences, 91, 7787–91.

    Article  CAS  Google Scholar 

  5. Horiuchi, S. (1996). Trends in Cardiovascular Medicine, 6, 163–8.

    Article  CAS  Google Scholar 

  6. Thornalley, P. J. (2008). Drug Metabolism and Drug Interactions, 23, 125–50.

    Article  CAS  Google Scholar 

  7. Thornalley, P. J., Langborg, A., & Minhas, H. S. (1999). The Biochemical Journal, 344, 109–16.

    Article  CAS  Google Scholar 

  8. Monnier, V. M., & Cerami, A. (1981). Science, 211, 491–93.

    Article  CAS  Google Scholar 

  9. Nagao, M., Fujita, Y., Wakabayashi, K., Nukaya, H., Kosuge, T., & Sugimura, T. (1981). Environmental Health Perspectives, 67, 89–91.

    Article  Google Scholar 

  10. Moree-Testa, P., & Saint-Jalm, Y. (1981). Journal of Chromatography, 217, 197–20.

    Article  CAS  Google Scholar 

  11. Westwood, M. E., & Thornalley, P. J. (1996). Immunology Letters, 50, 17–21.

    Article  CAS  Google Scholar 

  12. Lo, T. W. C., Westwood, M. E., McLellan, A. C., Selwood, T., & Thornalley, P. J. (1994). The Journal of Biological Chemistry, 269, 32299–305.

    CAS  Google Scholar 

  13. Westwood, M. E., McLellan, A. C., & Thornalley, P. J. (1994). The Journal of Biological Chemistry, 269, 32293–98.

    CAS  Google Scholar 

  14. Krymkiewicz, N. (1973). EBS Letters, 29, 51–4.

    CAS  Google Scholar 

  15. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P., & Cerami, A. (1996). Science, 232, 1629–32.

    Article  Google Scholar 

  16. Huby, R., & Harding, J. J. (1988). Experimental Eye Research, 47, 53–59.

    Article  CAS  Google Scholar 

  17. Booth, A. A., Khalifah, R. G., & Hudson, B. G. (1996). Biochemical and Biophysical Research Communications, 220, 113–19.

    Article  CAS  Google Scholar 

  18. Klein, J. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 2029–2030.

    Article  CAS  Google Scholar 

  19. Ansari, M. A., Haris, M. K., Aijaz, A. K., Asfia, S., Shahid, M., Shujatullah, F., & Azam, A. (2011). Biologie Médicale, 3, 141–146.

    CAS  Google Scholar 

  20. Ansari, M.A., Haris, M.K., Aijaz, A.K., Ahmad, M.K. Mahdi, A.A., Pal, R., and Cameotra, S.S. (2013In Press) J Basic Microbiol DOI: 10.1002/jobm.201300457.

  21. Singha, S., Bhattacharya, J., Datta, H., & Dasgupta, A. K. (2009). Nanomedicine, 5, 21–29.

    Article  CAS  Google Scholar 

  22. Sheikpranbabu, S., Kalishwaralal, K., Lee, K., Vaidyanathan, R., Eom, S. H., & Gurunanak, S. (2010). Biomaterials, 31, 2260–71.

    Article  CAS  Google Scholar 

  23. Harmsen, B. J., & Braam, W. G. (1969). International Journal Peptide Research, 1, 225–33.

    CAS  Google Scholar 

  24. Cedervall, T., Lynch, I., Lindman, S., & Berggard, T. (2007). Proceedings of the National Academy of Sciences, 104, 2050–55.

    Article  CAS  Google Scholar 

  25. Gordillo, E., Ayala, A., Bautista, J., and Machado. (1989) J Biol Chem 264, 17024–28.

  26. Monnier, V. M., Kohn, R. R., & Cerami, A. (1984). Proceedings of the National Academy of Sciences, 81, 583–87.

    Article  CAS  Google Scholar 

  27. Elgawish, A., Glomb, M., Freidlander, M., & Monnier, V. M. (1996). The Journal of Biological Chemistry, 271, 12964–71.

    Article  CAS  Google Scholar 

  28. Vlassara, H., Brownlee, M., & Cerami, A. (1983). Diabetes, 32, 670–74.

    Article  CAS  Google Scholar 

  29. Phillips, S. A., Mirrlees, D., & Thornalley, P. J. (1993). Biochemical Pharmacology, 46, 805–11.

    Article  CAS  Google Scholar 

  30. McLellan, A. C., Thornalley, P. J., Benn, J., & Sonksen, P. H. (1994). Clinical Science, 87, 21–29.

    CAS  Google Scholar 

  31. Jisha, V. S., Arun, K. T., Hariharan, M., & Ramaiah, D. (2006). Journal of the American Chemical Society, 128, 6024–25.

    Article  CAS  Google Scholar 

  32. Banerjee, T., Singh, S. K., & Kishore, N. (2006). The Journal of Physical Chemistry, 110, 24147–56.

    Article  CAS  Google Scholar 

  33. Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Nano Letters, 6, 662–68.

    Article  CAS  Google Scholar 

  34. Schmitt, A., Schmitt, J., Munch, G., & Gasic-Milenkovic, J. (2005). Analytical Biochemistry, 338, 201–15.

    Article  CAS  Google Scholar 

  35. Bhattacharya, J., Jasrapuria, S., Sarkar, T., et al. (2007). Nanomedicine, 3, 4–19.

    Google Scholar 

  36. Kim, J., Hong, C., Koo, Y., Choi, H., & Lee, K. (2012). Biological and Pharmaceutical Bulletin, 35, 260–64.

    Article  CAS  Google Scholar 

  37. Sastry, M., Kumar, A., Datar, S., Dharmadhikari, C. V., & Ganesh, K. N. (2001). Applied Physics Letters, 78, 2943.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Yeungnam University for providing financial assistance to Jalaluddin M. Ashraf. The authors also would like to acknowledge the SAIF-DST, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi, India, for HR-TEM observations, as well as the Center for Excellence in Nanomaterials, Department of Applied Physics, AMU, Aligarh, for ATR-FTIR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Azam Ansari.

Additional information

Jalaluddin M. Ashraf and Mohammad Azam Ansari are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, J.M., Ansari, M.A., Choi, I. et al. Antiglycating Potential of Gum Arabic Capped-Silver Nanoparticles. Appl Biochem Biotechnol 174, 398–410 (2014). https://doi.org/10.1007/s12010-014-1065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1065-1

Keywords

Navigation