Skip to main content

Low-Cost Production of Green Microalga Botryococcus braunii Biomass with High Lipid Content Through Mixotrophic and Photoautotrophic Cultivation

Abstract

Botryococcus braunii is a microalga that is regarded as a potential source of renewable fuel because of its ability to produce large amounts of lipid that can be converted into biodiesel. Agro-industrial by-products and wastes are of great interest as cultivation medium for microorganisms because of their low cost, renewable nature, and abundance. In this study, two strategies for low-cost production of B. braunii biomass with high lipid content were performed: (i) the mixotrophic cultivation using molasses, a cheap by-product from the sugar cane plant as a carbon source, and (ii) the photoautotrophic cultivation using nitrate-rich wastewater supplemented with CO2 as a carbon source. The mixotrophic cultivation added with 15 g L−1 molasses produced a high amount of biomass of 3.05 g L−1 with a high lipid content of 36.9 %. The photoautotrophic cultivation in nitrate-rich wastewater supplemented with 2.0 % CO2 produced a biomass of 2.26 g L−1 and a lipid content of 30.3 %. The benefits of this photoautotrophic cultivation are that this cultivation would help to reduce accumulation of atmospheric carbon dioxide and more than 90 % of the nitrate could be removed from the wastewater. When this cultivation was scaled up in a stirred tank photobioreactor and run with semi-continuous cultivation regime, the highest microalgal biomass of 5.16 g L−1 with a comparable lipid content of 32.2 % was achieved. These two strategies could be promising ways for producing cheap lipid-rich microalgal biomass that can be used as biofuel feedstocks and animal feeds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.

    CAS  Article  Google Scholar 

  2. Lee, Y. K. (2004). In A. Richmond (Ed.), Handbook of Microalgal Culture, Biotechnology and Applied Phycology (p. 116). Oxford: Blackwell Publishing.

    Google Scholar 

  3. An, J. Y., Sim, S. J., Lee, J. S., & Kim, B. W. (2003). Journal of Applied Phycology, 15, 185–191.

    CAS  Article  Google Scholar 

  4. Martinez, M. E., Jimenez, J. M., & Yousfi, F. E. (1999). Bioresource Technology, 67, 233–240.

    CAS  Article  Google Scholar 

  5. Ramos-Suárez, J. L., & Carreras, N. (2014). Chemical Engineering Journal, 242, 86–95.

    Article  Google Scholar 

  6. Alzate, M. E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2014). Chemical Engineering Journal, 243, 405–410.

    CAS  Article  Google Scholar 

  7. Li, S., Xu, J., Chen, J., Chen, J., Zhou, C., & Yan, X. (2014). Aquaculture, 428–429, 104–110.

    Article  Google Scholar 

  8. Yeesang, C., & Cheirsilp, B. (2011). Bioresource Technology, 102, 3034–3040.

    CAS  Article  Google Scholar 

  9. Tansakul, P., Savaddiraksa, Y., Prasertsan, P., & Tongurai, C. (2005). Thai Journal of Agricultural Science, 38, 71–76.

    Google Scholar 

  10. Tripathi, U., Sarada, R., & Ravishankar, G. A. (2001). World Journal of Microbiology and Biotechnology, 17, 325–329.

    CAS  Article  Google Scholar 

  11. A.P.H.A., A.W.W.A., W.P.C.F. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  12. Miller, G. L. (1959). Analytical Chemistry, 31, 426–429.

    CAS  Article  Google Scholar 

  13. Mexwell, J. R., Douglas, A. G., Eglinton, G., & McCormick, A. (1968). Phytochemistry, 7, 2157–2171.

    Article  Google Scholar 

  14. Cerón García, M. C., Sánchez Mirón, A., Fernández Sevilla, J. M., Molina, E., & Grima García Camacho, F. (2005). Process Biochemistry, 40, 297–305.

    Article  Google Scholar 

  15. Ip, P.-F., Wong, K.-H., & Chen, F. (2004). Process Biochemistry, 39, 1761–1766.

    CAS  Article  Google Scholar 

  16. Jeon, Y. C., Cho, C.-W., & Yun, Y.-S. (2006). Enzyme and Microbial Technology, 39, 490–495.

    CAS  Article  Google Scholar 

  17. Shi, X. M., Liu, H. J., Zhang, X. W., & Chen, F. (1999). Process Biochemistry, 34, 341–347.

    CAS  Article  Google Scholar 

  18. Oh, S. H., Han, J. G., Kim, Y., Ha, J. H., Kim, S. S., Jeong, M. H., Jeong, H. S., Kim, N. Y., Cho, J. S., Yoon, W. B., Lee, S. Y., Kang, D. H., & Lee, H. Y. (2009). Journal of Bioscience and Bioengineering, 108, 429–434.

    CAS  Article  Google Scholar 

  19. Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Critical Reviews in Biotechnology, 22, 245–279.

    CAS  Article  Google Scholar 

  20. Zhang, H., Wang, W., Li, Y., Yang, W., & Shen, G. (2011). Biomass and Bioenergy, 35, 1710–1715.

    CAS  Article  Google Scholar 

  21. Chojnacka, K., & Noworyta, A. (2004). Enzyme and Microbial Technology, 34, 461–465.

    CAS  Article  Google Scholar 

  22. Marques, F. J., Sasaki, K., Kakizano, T., Nishio, N., & Nagai, S. (1993). Journal of Fermentation and Bioengineering, 5, 408–410.

    Article  Google Scholar 

  23. Torzillo, G., Sacchi, A., & Materassi, R. (1991). Bioresource Technology, 38, 95–100.

    Article  Google Scholar 

  24. Obgonna, J. C., & Tanaka, H. C. (1998). Bioresource Technology, 65, 62–72.

    Google Scholar 

  25. Villarejo, A., Orus, M. I., & Martinez, F. (1995). Plant Physiology, 94, 680–686.

    CAS  Article  Google Scholar 

  26. Xu, H., Miao, X., & Wu, Q. (2006). Journal of Biotechnology, 126, 499–507.

    CAS  Article  Google Scholar 

  27. Mallick, N., Mandal, S., Singh, A. K., Bishai, M., & Dash, A. (2012). Journal of Chemical Technology and Biotechnology, 87, 137–145.

    CAS  Article  Google Scholar 

  28. Chen, J. C. P., Chou, C. C. (1993) Cane Sugar Handbook. Wiley and Sons.

  29. Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Bioresource Technology, 99, 4717–4722.

    CAS  Article  Google Scholar 

  30. Fakas, S., Galiotou-Panayotou, M., Papanikolaou, S., Komaitis, M., & Aggelis, G. (2007). Enzyme and Microbial Technology, 40, 1321–1327.

    CAS  Article  Google Scholar 

  31. Chiu, S.Y., Kao, C.Y., Chen, C.H., Kuan, T.C., Ong, S.C., Lin, C.S. (2008). Bioresource Technology, 99, 3389-3396.

  32. Lee, J. S., Kim, D. K., Lee, J. P., Park, S. C., Koh, J. H., Cho, H. S., & Kim, S. W. (2002). Bioresource Technology, 82, 1–4.

    CAS  Article  Google Scholar 

  33. Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Bioresource Technology, 98, 560–564.

    CAS  Article  Google Scholar 

  34. Suzuki, T., Matsuo, T., Ohtaguchi, K., & Koide, K. (1995). Journal of Chemical Technology and Biotechnology, 62, 351–358.

    CAS  Article  Google Scholar 

  35. Goyal, A., & Gimmler, H. (1989). Archives of Microbiology, 152, 138–142.

    CAS  Article  Google Scholar 

  36. Tam, N. F. Y., & Wong, Y. S. (2000). Environmental Pollution, 107, 145–151.

    CAS  Article  Google Scholar 

  37. Borowitzka, M. A. (2013). Journal of Applied Phycology, 25, 743–756.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was financial supported by the International Foundation for Science and Thai Research Fund under Grant MRG5280211. The first author was supported by a grant funded under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program Thai Doctoral degree from the Office of the Higher Education Commission and Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeesang, C., Cheirsilp, B. Low-Cost Production of Green Microalga Botryococcus braunii Biomass with High Lipid Content Through Mixotrophic and Photoautotrophic Cultivation. Appl Biochem Biotechnol 174, 116–129 (2014). https://doi.org/10.1007/s12010-014-1041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1041-9

Keywords

  • Botryococcus braunii
  • Lipid
  • Mixotrophic
  • Photoautotrophic
  • Wastewater