Skip to main content
Log in

Effects of Exogenous Methyl Jasmonate on the Biosynthesis of Shikonin Derivatives in Callus Tissues of Arnebia euchroma

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The shikonin derivatives, accumulated in the roots of Arnebia euchroma (Boraginaceae), showed antibacterial, anti-inflammatory, and anti-tumor activities. To explore their possible biosynthesis regulation mechanism, this paper investigated the effects of exogenous methyl jasmonate (MJ) on the biosynthesis of shikonin derivatives in callus cultures of A. euchroma. The main results include: Under MJ treatment, the growth of A. euchroma callus cultures was not inhibited, but the expression level of both the genes involved in the biosynthesis of shikonin derivatives and their precursors and the genes responsible for intracellular localization of shikonin derivatives increased significantly in the Red Strain (shikonin derivatives high-producing strain). The quantitative analysis showed that six out of the seven naphthoquinone compounds under investigation increased their contents in the MJ-treated Red Strain, and in particular, the bioactive component acetylshikonin nearly doubled its content in the MJ-treated Red Strain. In addition, it was also observed that the metabolic profiling of naphthoquinone compounds changed significantly after MJ treatment, and the MJ-treated and MJ-untreated strains clearly formed distinct clusters in the score plot of PLS-DA. Our results provide some new insights into the regulation mechanism of the biosynthesis of shikonin derivatives and a possible way to increase the production of naphthoquinone compounds in A. euchroma callus cultures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AeAP :

Arnebia euchroma apoplastic protein gene

AeC4H :

Arnebia euchroma cinnamic acid 4-hydroxylase gene

Ae4CL :

Arnebia euchroma 4-coumarate:CoA ligase gene

AeDI2 :

Arnebia euchroma darkinducible gene 2

GPP:

Geranyl diphosphate

AeGPPS :

Arnebia euchroma geranyl pyrophosphate synthase gene

4-HB:

4-Hydroxybenzoate

AeHMGR :

Arnebia euchroma 3-hydroxy-3-methylglutarylcoenzyme A reductase gene

AePGT :

Arnebia euchroma p-hydroxybenzoate 3-geranyltransferase gene

2,4-D:

2,4-Dichlorophenoxyacetic acid

DW:

Dry weight

KT:

6-Furfurylaminopurine

IAA:

Indoleacetic acid

MJ:

Methyl jasmonate

References

  1. Syklowska-Baranek, K., Pietrosiuk, A., Naliwajski, M. R., Kawiak, A., Jeziorek, M., Wyderska, S., Lojkowska, E., & Chinou, I. (2012). In Vitro Cellular & Developmental Biology — Plant, 48, 555–564.

    Article  CAS  Google Scholar 

  2. Long, S., Guang, Z. Y., Bao, J. G., Wei, X., Yan, Y. H., Ying, L. W., Yang, Z., & Li, H. L. (2012). Phytotherapy Research, 26, 26–33.

    Article  Google Scholar 

  3. Chen, X., Yang, L., Oppenheim, J. J., & Howard, M. Z. (2002). Phytotherapy Research, 16, 199–209.

    Article  CAS  Google Scholar 

  4. Tabata, M., Mizukami, H., Hiraoka, N., & Konoshima, M. (1974). Phytochemistry, 13, 927–932.

    Article  CAS  Google Scholar 

  5. Tabata, M. (1996). Plant Tissue Culture Letters, 13, 117–126.

    Article  CAS  Google Scholar 

  6. Yazaki, K., Kunihisa, M., Fujisaki, T., & Sato, F. (2002). Journal of Biological Chemistry, 277, 6240–6246.

    Article  CAS  Google Scholar 

  7. Yazaki, K., Kataoka, M., Honda, G., Severin, K., & Heide, L. (1997). Bioscience Biotechnology, and Biochemistry, 61, 1995–2003.

    Article  CAS  Google Scholar 

  8. Yamamura, Y., Ogihara, Y., & Mizukami, H. (2001). Plant Cell Reports, 20, 655–662.

    Article  CAS  Google Scholar 

  9. Wang, Z. X., Li, S. M., Loscher, R., & Heide, L. (1997). Archives of Biochemistry and Biophysics, 347, 249–255.

    Article  CAS  Google Scholar 

  10. Lange, B. M., Severin, K., Bechthold, A., & Heide, L. (1998). Planta, 204, 234–241.

    Article  CAS  Google Scholar 

  11. Zhang, W. J., Su, J., Tan, M. Y., Liu, G. L., Pang, Y. J., Shen, H. G., Qi, J. L., & Yang, Y. H. (2010). Plant Cell Tissue and Organ Culture, 101, 135–142.

    Article  CAS  Google Scholar 

  12. Zhang, W. J., Zou, A. L., Miao, J., Yin, Y. L., Tian, R. N., Pang, Y. J., Yang, R. W., Qi, J. L., & Yang, Y. H. (2011). Plant Biology (Stuttg), 13, 343–348.

    Article  Google Scholar 

  13. Yazaki, K., Matsuoka, H., Shimomura, K., Bechthold, A., & Sato, F. (2001). Plant Physiology, 125, 1831–1841.

    Article  CAS  Google Scholar 

  14. Yamamura, Y., Sahin, F. P., Nagatsu, A., & Mizukami, H. (2003). Plant and Cell Physiology, 44, 437–446.

    Article  CAS  Google Scholar 

  15. Qi, J. L., Zhang, W. J., Liu, S. H., Wang, H., Sun, D. Y., Xu, G. H., Shi, M. W., Liu, Z., Zhang, M. S., Zhang, H. M., & Yang, Y. H. (2008). Journal of Plant Physiology, 165, 1474–1482.

    Article  CAS  Google Scholar 

  16. Tani, M., Takeda, K., Yazaki, K., & Tabata, M. (1993). Phytochemistry, 34, 1285–1290.

    Article  CAS  Google Scholar 

  17. Touno, K., Tamaoka, J., Ohashi, Y., & Shimomura, K. (2005). Plant Physiology and Biochemistry, 43, 101–105.

    Article  CAS  Google Scholar 

  18. Fujita, Y., Hara, Y., Suga, C., & Morimoto, T. (1981). Plant Cell Reports, 1, 61–63.

    Article  CAS  Google Scholar 

  19. Kim, D. J., & Chang, H. N. (1990). Biotechnology Letters, 12, 443–446.

    Article  CAS  Google Scholar 

  20. Yazaki, K., Takeda, K., & Tabata, M. (1997). Plant and Cell Physiology, 38, 776–782.

    Article  CAS  Google Scholar 

  21. Kim, Y. S., Yeung, E. C., Hahn, E. J., & Paek, K. Y. (2007). Biotechnology Letters, 29, 1789–1792.

    Article  CAS  Google Scholar 

  22. Sakunphueak, A., & Panichayupakaranant, P. (2010). Bioresource Technology, 101, 8777–8783.

    Article  CAS  Google Scholar 

  23. Wang, H. H., Ma, C. F., Li, Z. Q., Ma, L. Q., Wang, H., Ye, H. C., Xu, G. W., & Liu, B. Y. (2010). Industrial Crops and Products, 31, 214–218.

    Article  Google Scholar 

  24. Li, G. F., Wu, Z. R., Ye, H. C., Lu, F. S., & Xiang, G. Q. (1988). Chinese Bulletin of Botany, 5, 84–86.

    Google Scholar 

  25. Kim, J. Y., Jeong, H. J., Park, J. Y., Kim, Y. M., Park, S. J., Cho, J. K., Park, K. H., Ryu, Y. B., & Lee, W. S. (2012). Bioorganic & Medicinal Chemistry, 20, 1740–1748.

    Article  CAS  Google Scholar 

  26. Rohr, F., Ulrichs, C., Schreiner, M., Zrenner, R., & Mewis, I. (2012). Plant Physiology and Biochemistry, 55, 52–59.

    Article  CAS  Google Scholar 

  27. Wu, Y. Y., Zhu, L., Ma, X. Y., Shao, Z. J., Chen, J., Chen, X. J., Wan, L. H., & Zhou, L. M. (2011). Pharmaceutical Biology, 49, 531–538.

    Article  CAS  Google Scholar 

  28. Chen, H., Jones, A. D., & Howe, G. A. (2006). FEBS Letters, 580, 2540–2546.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Pengyue Li (Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences) for his help in HPLC and LC-MS analyses. This work was supported by the National Natural Science Foundation of China (No. 61173098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Lei, C., Dong, Q. et al. Effects of Exogenous Methyl Jasmonate on the Biosynthesis of Shikonin Derivatives in Callus Tissues of Arnebia euchroma . Appl Biochem Biotechnol 173, 2198–2210 (2014). https://doi.org/10.1007/s12010-014-1025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1025-9

Keywords

Navigation