Applied Biochemistry and Biotechnology

, Volume 173, Issue 8, pp 2140–2151

Effect of Vitreoscilla Hemoglobin and Culture Conditions on Production of Bacterial l-Asparaginase, an Oncolytic Enzyme

Article

Abstract

l-asparaginase is a widely used cancer chemotherapy enzyme. The source for the enzyme with this property is mainly bacterial and its synthesis is strongly regulated by oxygen. In this study, we utilized two recombinant systems: one carried the gene (vgb) for the Vitreoscilla hemoglobin (VHb), a protein of prokaryotic origin which confers a highly efficient oxygen uptake to its host and the other carried the l-asparaginase gene (ansB). The host bacteria were Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. Of these three bacteria, all gram-negative, E. coli and its recombinant strain showed up to sevenfold higher l-asparaginase activity in lactose than in other carbon sources. Although, in this bacterium glycerol was the poorest source for l-asparaginase synthesis, it supported the highest biomass production. In glucose medium, l-asparaginase activity of E. aerogenes was about threefold higher than its vgb and ansB recombinants. ansB recombinant showed significantly higher enzyme levels than both host and vgb recombinants in glycerol and lactose media. In this bacterium, VHb/vgb clearly caused a decrease in the enzyme synthesis under all conditions. As seen for E. aerogens, glycerol was the most favorable carbon source for P. aeruginosa and its vgb strain in terms of both l-asparaginase synthesis and biomass production. The cultures grown in glycerol had more than two- and threefold biomass than in glucose and lactose, respectively, and up to elevenfold than in mannitol. Indeed, the highest biomass production for all bacteria and their recombinants was in glycerol. The VHb/vgb system is clearly advantageous for production of l-asparaginase in P. aeruginosa. The same, however, does not hold true for E. aerogenes.

Keywords

l-asparaginase Vitreoscilla hemoglobin Chemotherapeutic enzymes ansB vgb 

References

  1. 1.
    Ettinger, L. J., Ettinger, A. G., Avramis, V. I., & Gaynon, P. S. (1997). Acute lymphoblastic leukaemia: a guide to asparaginase and pegaspargase therapy. Biodrugs, 7, 30–39.CrossRefGoogle Scholar
  2. 2.
    Geckil, H., & Gencer, S. (2004). Production of l-asparaginase in Enterobacter aerogenes expressing Vitreoscilla hemoglobin for efficient oxygen uptake. Applied Microbiology and Biotechnology, 63, 691–697.CrossRefGoogle Scholar
  3. 3.
    Mukherjee, J., Majumdar, S., & Scheper, T. (2000). Studies on nutritional and oxygen requirements for production of l-asparaginase by Enterobacter aerogenes. Applied Microbiology and Biotechnology, 53, 180–184.CrossRefGoogle Scholar
  4. 4.
    Lee, S. M., Ross, J. T., Gustafson, M. E., Wroble, M. H., & Muschik, G. M. (1986). Large-scale recovery and purification of l-asparaginase from Erwinia carotovora. Applied Microbiology and Biotechnology, 12, 229–247.Google Scholar
  5. 5.
    Cornea, C. P., Lupescu, I., Vatafu, I., Savoiu, V. G., & Campeanu, G. H. (2000). Isolation and characterization of some L-asparaginase producing recombinant Escherichia coli strains. Roumamian Biotechnological Letters, 5, 471–478.Google Scholar
  6. 6.
    Heinemann, B., & Howard, A. J. (1969). Production of tumor-inhibitory l-asparaginase by submerged growth of Serratia marcescens. Applied Microbiology, 18, 64–67.Google Scholar
  7. 7.
    Muller, H. J., & Boos, J. (1998). Use of L-asparaginase in childhood ALL. Critical Review in Oncology Hematology, 28, 97–113.CrossRefGoogle Scholar
  8. 8.
    Borek, D., & Jaskolski, M. (2001). Sequence analysis of enzymes with asparaginase activity. Acta Biochimica Polonica, 48, 893–902.Google Scholar
  9. 9.
    Kozak, M., & Jurga, S. (2002). A comparison between the crystal and solution structures of Escherichia coli asparaginase II. Acta Biochimica Polonica, 49, 509–513.Google Scholar
  10. 10.
    Ohnuma, T., Holland, J. F., & Freeman, A. (1970). Biochemical and pharmacological studies with asparaginase in man. Cancer Research, 30, 2297–305.Google Scholar
  11. 11.
    Swain, A. L., Jaskolski, M., Housset, D., Rao, J. K. M., & Wlodawer, A. (1993). Crystal structure of Escherichia coli l-asparaginase, an enzyme used in cancer therapy. Proceedings of theNational Academy of Sciences USA, 90, 1474–1478.CrossRefGoogle Scholar
  12. 12.
    Fisher, S. H., & Wray, L. V. (2002). Bacillus subtilis 168 contains two differentially regulated genes encoding l-asparaginase. Journal of Bacteriology, 184, 2148–2154.CrossRefGoogle Scholar
  13. 13.
    Jennings, M. P., & Beacham, I. R. (1990). Analysis of the Escherichia coli gene encoding l-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. Journal of Bacteriology, 172, 1491–1498.Google Scholar
  14. 14.
    Barnes, W. R., Dorn, G. L., & Vela, G. R. (1977). Effect of culture conditions on synthesis of l-asparaginase by Escherichia coli A-1. Applied and Environmental Microbiology, 33, 257–261.Google Scholar
  15. 15.
    El-Bessoumy, A. A., Sarhan, M., & Mansour, J. (2004). Production, isolation, and purification of l-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. Journal of Biochemistry and Molecular Biology, 37, 387–393.CrossRefGoogle Scholar
  16. 16.
    Geckil, H., Gencer, S., Kahraman, H., & Erenler, S. O. (2003). Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. Research in Microbiology, 154, 425–431.CrossRefGoogle Scholar
  17. 17.
    Geckil, H., Stark, B. C., & Webster, D. A. (2001). Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene. Journal of Biotechnology, 85, 57–66.CrossRefGoogle Scholar
  18. 18.
    Khosla, C., & Bailey, J. E. (1988). Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 331, 633–635.CrossRefGoogle Scholar
  19. 19.
    Stark, B. C., Webster, D. A., & Dikshit, K. L. (1999). Vitreoscilla hemoglobin: molecular biology, biochemistry, and practical applications. Recent Reseach Development in Biotechnology and Bioengineering, 2.Google Scholar
  20. 20.
    Park, K. W., Kim, K. J., Howard, A. J., Stark, B. C., & Webster, D. A. (2002). Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. The Journal of Biological Chemistry, 277, 33334–33337.CrossRefGoogle Scholar
  21. 21.
    Ramandeep, H. K. W., Raje, M., Kim, K. J., Stark, B. C., Dikshit, K. L., & Webster, D. A. (2001). Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. The Journal of Biological Chemistry, 276, 24781–24789.CrossRefGoogle Scholar
  22. 22.
    Joshi, M., & Dikshit, K. L. (1994). Oxygen-Dependent Regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. Biochemical Biophysical Reseach Communication, 202, 535–542.CrossRefGoogle Scholar
  23. 23.
    Dikshit, R. P., Dikshit, K. L., Liu, Y. X., & Webster, D. A. (1992). The Bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Archives of Biochemistry and Biophysics, 293, 241–245.CrossRefGoogle Scholar
  24. 24.
    Dikshit, K. L., & Webster, D. A. (1988). Cloning, Characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 70, 377–386.CrossRefGoogle Scholar
  25. 25.
    Erenler, S. O., Gencer, S., Geckil, H., Stark, B. C., & Webster, D. A. (2004). Cloning and expression of the Vitreoscilla hemoglobin gene in Enterobacter aerogenes: effect on cell growth and oxygen uptake. Appl Biochem Micro, 40, 241–248.CrossRefGoogle Scholar
  26. 26.
    Ortuno-Olea, L., & Duran-Vargas, S. (2000). The l-asparagine operon of Rhizobium etli contains a gene encoding an atypical asparaginase. Fems Microbiology Letters, 189, 177–182.CrossRefGoogle Scholar
  27. 27.
    Chung, J. W., Webster, D. A., Pagilla, K. R., & Stark, B. C. (2001). Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. Journal of Industrial Microbiology & Biotechnology, 27, 27–33.CrossRefGoogle Scholar
  28. 28.
    Huser, A., Kloppner, U., & Rohm, K. H. (1999). Cloning, sequence analysis, and expression of ansB from Pseudomonas fluorescens, encoding periplasmic glutaminase/asparaginase. Fems Microbiology Letters, 178, 327–335.CrossRefGoogle Scholar
  29. 29.
    Geckil, H., Ates, B., Gencer, S., Uckun, M., & Yilmaz, I. (2005). Membrane permeabilization of gram-negative bacteria with a potassium phosphate/hexane aqueous phase system for the release of l-asparaginase: an enzyme used in cancer therapy. Process Biochemistry, 40, 573–579.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J., & Russell, D. W. (2001). Molecular cloning : a laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  31. 31.
    Narta, U., Roy, S., Kanwar, S. S., & Azmi, W. (2011). Improved production of l-asparaginase by Bacillus brevis cultivated in the presence of oxygen-vectors. Bioresource Technology, 102, 2083–2085.CrossRefGoogle Scholar
  32. 32.
    Agarwal, A., Kumar, S., & Veeranki, V. D. (2011). Effect of chemical and physical parameters on the production of l-asparaginase from a newly isolated Serratia marcescens SK-07. Letters in Applied Microbiology, 52, 307–313.CrossRefGoogle Scholar
  33. 33.
    Boerman, S., Webster, D. A., & Roush, A. H. (1981). Control of heme content in Vitreoscilla by oxygen. Federation Proceedings, 40, 1864–1864.Google Scholar
  34. 34.
    Khleifat, K. M. (2006). Correlation between bacterial hemoglobin and carbon sources: their effect on copper uptake by transformed E. coli strain alpha DH5. Current Microbiology, 52, 64–68.CrossRefGoogle Scholar
  35. 35.
    Geckil, H., Gencer, S., & Uckun, M. (2004). Vitreoscilla hemoglobin expressing Enterobacter aerogenes and Pseudomonas aeruginosa respond differently to carbon catabolite and oxygen repression for production of l-asparaginase, an enzyme used in cancer therapy. Enzyme and Microbial Technology, 35, 182–189.CrossRefGoogle Scholar
  36. 36.
    Hymavathi, M., Sathish, T., Brahmaiah, P., & Prakasham, R. S. (2010). Impact of carbon and nitrogen sources on l-asparaginase production by isolated Bacillus circulans (MTCC 8574): application of saturated Plackett-Burman Design. Chemical and Biochemical Engineering Quarterly, 24, 473–480.Google Scholar
  37. 37.
    Wei, D. Z., & Liu, H. (1998). Promotion of L-asparaginase production by using n-dodecane. Biotechnology Techniques, 12, 129–131.CrossRefGoogle Scholar
  38. 38.
    Wriston, J. C., Jr., & Yellin, T. O. (1973). L-asparajinase: a review. Advances in Enzymology and Related Areas of Molecular Biology, 39, 185–248.Google Scholar
  39. 39.
    Willis, R. C., & Woolpolk, C. A. (1974). Asparagine utilization in Escherichia coli. Journal Bacteriology, 118, 231–41.Google Scholar
  40. 40.
    Golden, K. J., & Bernlohr, R. W. (1985). Nitrogen catabolite repression of the l-asparaginase of Bacillus licheniformis. Journal of Bacteriology, 164, 938–940.Google Scholar
  41. 41.
    Treshalina, H. M., Lukasheva, E. V., Sedakova, L. A., Firsova, G. A., Guerassimova, G. K., Gogichaeva, N. V., & Berezov, T. T. (2000). Anticancer enzyme l-lysine α-oxidase. Applied Biochemistry Biotechnology, 88, 267–273.CrossRefGoogle Scholar
  42. 42.
    Roth, G., Nunes, J. E. S., Rosado, L. A., Bizarro, C. V., Volpato, G., Nunes, C. P., Renard, G., Basso, L. A., Santos, D. S., & Chies, J. M. (2013). Recombinant Erwinia carotovora l-asparaginase II production in Escherichia coli fed-batch cultures. Brazilian Journal of Chemical Engineering, 30, 245–256.CrossRefGoogle Scholar
  43. 43.
    Uppuluri, K. B., & Reddy, D. S. R. (2009). Optimization of l-asparaginase production by Isolated Aspergillus niger using sesame cake in a column bioreactor. Journal Pure Applied Microbiology, 3, 83–90.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiologyInonu UniversityMalatyaTurkey
  2. 2.Department of Molecular Biology and GeneticsInonu UniversityMalatyaTurkey

Personalised recommendations