Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1059–1072 | Cite as

Template-Assisted Electrochemical Growth of Polypyrrole Nanotubes for Development of High Sensitivity Glucose Biosensor

  • Pragya Agar Palod
  • Shyam S. Pandey
  • Shuji Hayase
  • Vipul SinghEmail author


In this paper, we report the growth of polypyrrole (PPy) nanotube arrays using template-assisted electrochemical polymerization to fabricate enzymatic glucose biosensors. The PPy nanotubes were grown on platinum-coated alumina membranes (Anodisc™s). By varying the polymerization time during the potentiostatic electropolymerization, the size/diameter of the PPy nanotubes were controlled, leading to changes in the subsequent enzyme immobilization (via physical adsorption). Enzyme electrode thus fabricated resulted in to the optimum sensitivity of 18.6 mA cm−2 M−1, a wide range of linear operation (0.25–20 mM) and the lowest detection limit of 0.25 mM glucose concentration for the biosensor with the polymerization time of 40 s. The effect of polymerization duration on the sensitivity has been explained on the basis of porosity and enzyme-loading capacity of polymerized electrodes.


Glucose biosensor Polypyrrole Glucose oxidase Amperometric Sensitivity Porosity Anodisc™ 



One of the authors P. A. P. is grateful to FESEM, Fluorescence and Potentiostat/Galvanostat facilities equipped at the Sophisticated Instrument Centre, IIT Indore. P. A. P. would also like to thank Dr. Mukul Gupta (University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific Research Indore (M. P.), India) for the usage of the DC magnetron sputtering system. P. A. P. would further like to thank the Ministry of Human Resource and Development (MHRD), India for providing the Teaching Assistantship (TA). Author V. S. would like to thank director of IIT Indore for providing the seed grant for the research.


  1. 1.
    Vasudevan, D. M., & Sreekumari, S. (2005). In J. Brothers (Ed.), Textbook of biochemistry for medical students. Medical Publishers: New Delhi.Google Scholar
  2. 2.
    MacLeod, A. J. (1973) Instrumental methods of food analysis. ed. Elek Science, London.Google Scholar
  3. 3.
    Newman, J. D., & Turner, A. P. F. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors and Bioelectronics, 20, 2435–2453.CrossRefGoogle Scholar
  4. 4.
    Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.CrossRefGoogle Scholar
  5. 5.
    Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241–261.CrossRefGoogle Scholar
  6. 6.
    Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.CrossRefGoogle Scholar
  7. 7.
    Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32, 876–921.CrossRefGoogle Scholar
  8. 8.
    Rajesh, P. S. S., Takashima, W., & Kaneto, K. (2004). Development of an amperometric biosensor based on a redox-mediator-doped polypyrrole film. Journal of Applied Polymer Science, 93, 927–933.CrossRefGoogle Scholar
  9. 9.
    Vidal, J.-C., Garcia-Ruiz, E., & Castillo, J.-R. (2003). Recent Advances in electropolymerized conducting polymers in amperometric biosensors. Microchimica Acta, 143, 93–111.CrossRefGoogle Scholar
  10. 10.
    Gurunathan, K., Murugan, A. V., Marimuthu, R., Mulik, U. P., & Amalnerkar, D. P. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61, 173–191.CrossRefGoogle Scholar
  11. 11.
    Cosnier, S. and Karyakin, A. (2010) Electropolymerization: concepts, materials and applications. ed. Wiley-VCH Verlag GmbH & Co. KGaA Germany.Google Scholar
  12. 12.
    Wallace, G. G., Tsekouras, G. and Wang, C. (2010), in Electropolymerization, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 215-240.Google Scholar
  13. 13.
    Huang, J., Wang, K., & Wei, Z. (2010). Conducting polymer nanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 20, 1117–1121.CrossRefGoogle Scholar
  14. 14.
    Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38, 2397–2409.CrossRefGoogle Scholar
  15. 15.
    Ekanayake, E. M. I. M., Preethichandra, D. M. G., & Kaneto, K. (2007). Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosensors and Bioelectronics, 23, 107–113.CrossRefGoogle Scholar
  16. 16.
    Ekanayake, E. M. I., Preethichandra, D. M. G., & Kaneto, K. (2008). Effect of glucose oxidase immobilizing techniques on performances of nano scale polypyrrole glucose biosensors. Japanese Journal of Applied Physics, 47, 1321–1324.CrossRefGoogle Scholar
  17. 17.
    Raicopol, M., Pruna, A., Damian, C., & Pilan, L. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 316–323.CrossRefGoogle Scholar
  18. 18.
    Ramanavičius, A., Ramanavičienė, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer—polypyrrole. Electrochimica Acta, 51, 6025–6037.CrossRefGoogle Scholar
  19. 19.
    Debiemme-Chouvy, C. (2009). Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochemistry Communications, 11, 298–301.CrossRefGoogle Scholar
  20. 20.
    Martin, C. R. (1995). Template synthesis of electronically conductive polymer nanostructures. Accounts of Chemical Research, 28, 61–68.CrossRefGoogle Scholar
  21. 21.
    Chakarvarti, S. K., & Vetter, J. (1998). Template synthesis—a membrane based technology for generation of nano-/micro materials: a review. Radiation Measurements, 29, 149–159.CrossRefGoogle Scholar
  22. 22.
    Xiao, R., Cho, S. I., Liu, R., & Lee, S. B. (2007). Controlled electrochemical synthesis of conductive polymer nanotube structures. Journal of the American Chemical Society, 129, 4483–4489.CrossRefGoogle Scholar
  23. 23.
    Small, E. W. (1991). in Topics in fluorescence spectroscopy. ed. Plenum, New York.Google Scholar
  24. 24.
    Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45.CrossRefGoogle Scholar
  25. 25.
    Wilson, K. and Walker, J. M. (2005) Principles and techniques of biochemistry and molecular biology. ed. Cambridge University Press, United Kingdom.Google Scholar
  26. 26.
    Wrolstad, R. (2001). Current protocols in food analytical chemistry. ed. Wiley, New York.Google Scholar
  27. 27.
    Holland, J. T., Harper, J. C., Dolan, P. L., Manginell, M. M., Arango, D. C., Rawlings, J. A., Apblett, C. A., & Brozik, S. M. (2012). Rational redesign of glucose oxidase for improved catalytic function and stability. PloS One, 7, e37924.CrossRefGoogle Scholar
  28. 28.
    Kotz, J. C. and Purcell, K. F. (1987). Chemistry & chemical reactivity ed. Saunders College Pub., Philadelphia.Google Scholar
  29. 29.
    Heinze, J., Frontana-Uribe, B. A., & Ludwigs, S. (2010). Electrochemistry of conducting polymers—persistent models and new concepts. Chemical Reviews, 110, 4724–4771.CrossRefGoogle Scholar
  30. 30.
    Hernández-Pérez, T., Morales, M., Batina, N., & Salmón, M. (2001). Effect of the electrosynthesis method on the surface morphology of the polypyrrole film—an atomic force microscopy study. Journal of The Electrochemical Society, 148, C369–C375.CrossRefGoogle Scholar
  31. 31.
    Zhao, K., Zhuang, S., Chang, Z., Songm, H., Dai, L., He, P., & Fang, Y. (2007). Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis, 19, 1069–1074.CrossRefGoogle Scholar
  32. 32.
    Liu, L., Jia, N., Zhou, Q., & Jiang, Z. (2007). Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Materials Science and Engineering C, 27, 57–60.CrossRefGoogle Scholar
  33. 33.
    Xu, G. Q., Lv, J., Zheng, Z. X. and Wu, Y. C. (2012). Polypyrrole (PPy) nanowire arrays entrapped with glucose oxidase biosensor for glucose detection. Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on, pp. 511-514.Google Scholar
  34. 34.
    Rabeah, K. A., & Marks, R. S. (2009). Impedance study of the hybrid molecule alginate-pyrrole: demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sensors and Actuators B, 136, 516–522.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pragya Agar Palod
    • 1
  • Shyam S. Pandey
    • 2
  • Shuji Hayase
    • 2
  • Vipul Singh
    • 1
    Email author
  1. 1.Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia
  2. 2.Department of Biological Functions and Engineering, Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushu-shiJapan

Personalised recommendations