Applied Biochemistry and Biotechnology

, Volume 173, Issue 8, pp 1977–1984 | Cite as

A Diverse Assemblage of Indole-3-Acetic Acid Producing Bacteria Associate with Unicellular Green Algae

  • Christopher E. Bagwell
  • Magdalena Piskorska
  • Tanya Soule
  • Angela Petelos
  • Chris M. Yeager
Article

Abstract

Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal–bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels.

Keywords

Auxins Microalgae Bacteria Biofuels Bioenergy Biomass Cultivation 

References

  1. 1.
    Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  2. 2.
    Weyer, K. M., Bush, D. R., Darzins, A., & Wilson, B. D. (2009). Bioenergy Research, 3, 204–213.CrossRefGoogle Scholar
  3. 3.
    Davis, R., Aden, A., & Pienkos, P. T. (2011). Applied Energy, 88, 3524–3531.CrossRefGoogle Scholar
  4. 4.
    Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Nature, 438, 90–93.CrossRefGoogle Scholar
  5. 5.
    de-Bashan, L. E., Hernandez, J.-P., Morey, T., & Bashan, Y. (2004). Water Research, 38, 466–474.CrossRefGoogle Scholar
  6. 6.
    Fukami, K., Nishijima, T., & Ishida, Y. (1997). Hydrobiologia, 358, 185–191.CrossRefGoogle Scholar
  7. 7.
    Kang, Y.-H., Jung, S. W., Joo, J.-H., & Han, M.-S. (2011). Hydrobiologia, 683, 151–162.CrossRefGoogle Scholar
  8. 8.
    Roth, P. B., Twiner, M. J., Mikulski, C. M., Barnhorst, A. B., & Doucette, G. J. (2008). Harmful Algae, 7, 682–691.CrossRefGoogle Scholar
  9. 9.
    Cole, J. J. (1982). Annual Review of Ecology and Systematics, 13, 291–314.CrossRefGoogle Scholar
  10. 10.
    Doucette, G. J. (1995). Natural Toxins, 3, 65–74.CrossRefGoogle Scholar
  11. 11.
    Delucca, R., & McCracken, M. D. (1977). Hydrobiologia, 55, 71–75.CrossRefGoogle Scholar
  12. 12.
    Mayali, X., & Doucette, G. J. (2002). Harmful Algae, 3, 277–293.CrossRefGoogle Scholar
  13. 13.
    Uribe, P., & Espejo, R. T. (2003). Applied and Environmental Microbiology, 69, 659–662.CrossRefGoogle Scholar
  14. 14.
    Allnutt, F. C., & Bonner, W. D. (1987). Plant Physiology, 85, 746–750.CrossRefGoogle Scholar
  15. 15.
    Amin, S. A., Green, D. H., Hart, M. C., Küpper, F. C., Sunda, W. G., & Carrano, C. J. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 17071–17076.Google Scholar
  16. 16.
    Keshtacher-Liebso, E., Hadar, Y., & Chen, Y. (1995). Applied and Environmental Microbiology, 61, 2439–2441.Google Scholar
  17. 17.
    Warren, M. J., Raux, E., Schubert, H. L., & Escalante-Semerena, J. C. (2002). Natural Product Reports, 19, 390–412.CrossRefGoogle Scholar
  18. 18.
    Allen, M. M., & Stanier, R. Y. (1968). Journal of General Microbiology, 51, 199–202.CrossRefGoogle Scholar
  19. 19.
    Gutierrez, C. K., Matsui, G. Y., Lincoln, D. E., & Lovell, C. R. (2009). Applied and Environmental Microbiology, 75, 2253–2258.CrossRefGoogle Scholar
  20. 20.
    Wise, M. G., McArthur, J. V., & Shimkets, L. J. (1997). Applied and Environmental Microbiology, 63, 1505–1514.Google Scholar
  21. 21.
    Dojka, M. A., Hugenholtz, P., Haack, S. K., & Pace, N. R. (1998). Applied and Environmental Microbiology, 64, 3869–3877.Google Scholar
  22. 22.
    Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., & Pace, N. R. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 6955–6959.Google Scholar
  23. 23.
    Wright, E. S., Yilmaz, L. S., & Noguera, D. R. (2012). Applied and Environmental Microbiology, 78, 717–725.CrossRefGoogle Scholar
  24. 24.
    Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., et al. (2009). Nucleic Acids Research, 37, D141–D145.CrossRefGoogle Scholar
  25. 25.
    Mandalam, R. K., & Palsson, B. O. (1998). Biotechnology and Bioengineering, 59, 605–611.CrossRefGoogle Scholar
  26. 26.
    Holm-Hansen, O., & Riemann, B. (1978). Oikos, 30, 438–447.CrossRefGoogle Scholar
  27. 27.
    Spaepen, S., Vanderleyden, J., & Remans, R. (2007). FEMS Microbiology Review, 31, 425–448.CrossRefGoogle Scholar
  28. 28.
    Khalid, A., Tahir, S., Arshad, M., & Zahir, Z. A. (2004). Australian Journal of Soil Research, 42, 921–926.CrossRefGoogle Scholar
  29. 29.
    Kim, Y. C., Leveau, J., Gardener, B. B. M., Pierson, E. A., Pierson, L. S., III, & Ryu, C.-M. (2011). Applied and Environmental Microbiology, 77, 1548–1555.CrossRefGoogle Scholar
  30. 30.
    Spaepen, S., & Vanderleyden, J. (2011). Cold Spring Harbor Perspectives in Biology, 3, a001438.CrossRefGoogle Scholar
  31. 31.
    Lugtenberg, B., & Kamilova, F. (2009). Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  32. 32.
    Whipps, J. M. (2001). Journal of Experimental Botany, 52, 487–511.CrossRefGoogle Scholar
  33. 33.
    Fisher, M. M., Wilcox, L. W., & Graham, L. E. (1998). Applied and Environmental Microbiology, 64, 4384–4389.Google Scholar
  34. 34.
    Krohn-Molt, I., Wemheuer, B., Alawi, M., Poehlein, A., Güllert, S., Schmeisser, C., et al. (2013). Applied and Environmental Microbiology, 79, 6196–6206.CrossRefGoogle Scholar
  35. 35.
    Rooney-Varga, J. N., Giewat, M. W., Savin, M. C., Sood, S., LeGresley, M., & Martin, J. L. (2005). Microbial Ecology, 49, 163–175.CrossRefGoogle Scholar
  36. 36.
    Sapp, M., Schwaderer, A. S., Wiltshire, K. H., Hoppe, H.-G., Gerdts, G., & Wichels, A. (2007). Microbial Ecology, 53, 683–699.CrossRefGoogle Scholar
  37. 37.
    Ueda, H., Otsuka, S., & Senoo, K. (2009). Microbiology Cultures College, 25, 21–25.Google Scholar
  38. 38.
    Smet, I. D., Voβ, U., Lau, S., Wilson, M., Shao, N., Timme, R. E., et al. (2011). Plant Physiology, 155, 209–221.CrossRefGoogle Scholar
  39. 39.
    Tate, J. J., Gutierrez-Wing, M. T., Rusch, K. A., & Benton, M. G. (2012). Journal of Plant Growth Regulation. doi:10.1007/s00344-012-9302-8.Google Scholar
  40. 40.
    Hunt, R. W., Chinnasamy, S., Bhatnagar, A., & Das, K. C. (2010). Applied Biochemistry and Biotechnology, 162, 2400–2414.CrossRefGoogle Scholar
  41. 41.
    Park, W.-K., Yoo, G., Moon, M., Kim, C. W., Choi, Y.-E., & Yang, J.-W. (2013). Applied Biochemistry and Biotechnology, 171, 1128–1142.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christopher E. Bagwell
    • 1
  • Magdalena Piskorska
    • 2
  • Tanya Soule
    • 1
    • 4
  • Angela Petelos
    • 1
  • Chris M. Yeager
    • 3
  1. 1.Department of Environmental Sciences and BiotechnologySavannah River National LaboratoryAikenUSA
  2. 2.Department of Biology and GeologyUniversity of South Carolina AikenAikenUSA
  3. 3.Biosciences DivisionLos Alamos National LaboratoryLos AlamosUSA
  4. 4.Department of BiologyIndiana University—Purdue University Fort WayneFort WayneUSA

Personalised recommendations