Skip to main content

Advertisement

Log in

The yjjN of E. coli codes for an l-galactonate dehydrogenase and can be used for quantification of l-galactonate and l-gulonate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli is able to utilize l-galactonate as a sole carbon source. A metabolic pathway for l-galactonate catabolism is described in E. coli, and it is known to be interconnected with d-galacturonate metabolism. The corresponding gene encoding the first enzyme in the l-galactonate pathway, l-galactonate-5-dehydrogenase, was suggested to be yjjN. However, l-galactonate dehydrogenase activity was never demonstrated with the yjjN gene product. Here, we show that YjjN is indeed an l-galactonate dehydrogenase having activity also for l-gulonate. The K m and k cat for l-galactonate were 19.5 ± 0.6 mM and 0.51 ± 0.03 s−1, respectively. In addition, YjjN was applied for a quantitative detection of the both of these substances in a coupled assay. The detection limits for l-galactonate and l-gulonate were 1.65 and 10 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Richard, P., & Hilditch, S. (2009). D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Applied Microbiology and Biotechnology, 82, 597–604.

    Article  CAS  Google Scholar 

  2. Valpuesta, V., & Botella, M. (2004). Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends in Plant Science, 9, 573–577.

    Article  CAS  Google Scholar 

  3. Cooper, R. (1979). The pathway for L-galactonate catabolism in Escherichia coli K-12. FEBS Letters, 103, 216–220.

    Article  CAS  Google Scholar 

  4. Reed, J., Patel, T., Chen, K., Joyce, A., Applebee, M., Herring, C., et al. (2006). Systems approach to refining genome annotation. Proceedings of the National Academy of Sciences, 103, 17480–17484.

    Article  CAS  Google Scholar 

  5. Cooper, R. (1980). The pathway for L-gulonate catabolism in Escherichia coli K-12 and Salmonella typhimurium LT-2. FEBS Letters, 115, 63–67.

    Article  CAS  Google Scholar 

  6. Linster, C., & Van Schaftigen, E. (2007). Vitamin C biosynthesis, recycling and degredation in mammals. FEBS Journal, 274, 1–22.

    Article  CAS  Google Scholar 

  7. Kuznetsova, E., Proudfoot, M., Sanders, S., Reinking, J., Savchenko, A., Arrowsmith, C., et al. (2005). Enzyme genomics: application of general enzymatic screens to discover new enzymes. FEMS Microbiology Reviews, 29, 263–279.

    CAS  Google Scholar 

  8. Kuivanen, J., Mojzita, D., Wang, Y., Hilditch, S., Penttilä, M., Richard, P., et al. (2012). Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid. Applied and Environmental Microbiology, 78, 8676–8683.

    Article  CAS  Google Scholar 

  9. Csiba, M., Cleophax, J., Petit, S., & Gero, S. (1993). An expedient and practical three-step synthesis of vitamin C from a byproduct of the sugar industry: the L-galactono-1, 4-lactone pathway. The Journal of Organic Chemistry, 58, 7281–7282.

    Article  CAS  Google Scholar 

  10. Onofri, S., Poerio, E., Serangeli, P., Tosi, S., Garuccio, I., & Arrigoni, O. (1997). Influence of L-galactonic acid γ-lactone on ascorbate production in some yeasts. Antonie Van Leeuwenhoek, 71, 277–280.

    Article  CAS  Google Scholar 

  11. Roland, J. Cayle, T. Dinwoodie, R., & Mehnert, D. (1986). Fermentation production of ascorbic acid from L-galactonic substrate. US Patent 4,595,659.

  12. Peränen, J., Rikkonen, M., Hyvönen, M., & Kääriäinen, L. (1996). T7 vectors with modified T7lac promoter for expression of proteins in Escherichia coli. Analytical Biochemistry, 236, 371–373.

    Article  Google Scholar 

  13. Sun, H., & Plapp, B. (1992). Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family. Journal of Molecular Evolution, 34, 522–535.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Academy of Finland through the Sustainable Energy (SusEn) program (grant 271025) and by the CNPq from Brazil in the form of a cooperation project. We thank Prof. Jack T. Pronk for providing d-tagaturonic acid and Anna-Liisa Ruskeepää and Ismo Mattila for the GC/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joosu Kuivanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuivanen, J., Richard, P. The yjjN of E. coli codes for an l-galactonate dehydrogenase and can be used for quantification of l-galactonate and l-gulonate. Appl Biochem Biotechnol 173, 1829–1835 (2014). https://doi.org/10.1007/s12010-014-0969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0969-0

Keywords

Profiles

  1. Peter Richard