Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production


This article presents a study on screening of microalgal strains from the Peking University Algae Collection and heterotrophic cultivation for biodiesel production of a selected microalgal strain. Among 89 strains, only five were capable of growing under heterotrophic conditions in liquid cultures and Chlorella sp. PKUAC 102 was found the best for the production of heterotrophic algal biodiesel. Composition of the growth medium was optimised using response surface methodology and optimised growth conditions were successfully used for cultivation of the strain in a fermentor. Conversion of algal lipids to fatty acid methyl esters (FAMEs) showed that the lipid profile of the heterotrophically cultivated Chlorella sp. PKUAC 102 contains fatty acids suitable for biodiesel production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2



Peking University Algae Collection


Fatty acid methyl esters


Response surface methodology


  1. 1.

    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.

    Article  Google Scholar 

  2. 2.

    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    CAS  Article  Google Scholar 

  3. 3.

    Daroch, M., Geng, S., & Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371–1381.

    Article  Google Scholar 

  4. 4.

    Grobbelaar, J. U. (2010). Microalgal biomass production: challenges and realities. Photosynthesis Research, 106(1–2), 135–144.

    CAS  Article  Google Scholar 

  5. 5.

    Borowitzka, M., & Moheimani, N. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18(1), 13–25.

    Article  Google Scholar 

  6. 6.

    Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868.

    CAS  Article  Google Scholar 

  7. 7.

    Daroch, M., Shao, C., Liu, Y., Geng, S., & Cheng, J. J. (2013). Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 146, 192–199.

    CAS  Article  Google Scholar 

  8. 8.

    Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.

    CAS  Article  Google Scholar 

  9. 9.

    Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermentors. Journal of Biotechnology, 126(4), 499–507.

    CAS  Article  Google Scholar 

  10. 10.

    Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.

    CAS  Article  Google Scholar 

  11. 11.

    Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.

    CAS  Article  Google Scholar 

  12. 12.

    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.

    CAS  Article  Google Scholar 

  13. 13.

    Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2010). Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Applied Biochemistry and Biotechnology, 160(6), 1674–1684.

    CAS  Article  Google Scholar 

  14. 14.

    Cheng, K.-C., Ren, M., & Ogden, K. L. (2013). Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250. Bioresource Technology, 128, 44–48.

    CAS  Article  Google Scholar 

  15. 15.

    Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.

    CAS  Article  Google Scholar 

  16. 16.

    Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., & Wang, G. (2013). Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 127, 422–428.

    CAS  Article  Google Scholar 

  17. 17.

    Shao, C., Liu, Y., Daroch, M., Geng, S., Xu, N., & Cheng, J. J. (2013). Isolation and identification of microalgae in Shenzhen Bay with molecular biotechnology. Guangdong Agricultural Sciences, 13, 135–138 (in chinese).

    Google Scholar 

  18. 18.

    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171–205.

    CAS  Google Scholar 

  19. 19.

    Johnson, M. B., & Wen, Z. Y. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy and Fuels, 23, 5179–5183.

    CAS  Article  Google Scholar 

  20. 20.

    Kuhl, A. (1962). Zur physiologie der Speicherung Kondensierter anorganischer Phosphate in Chlorella. Vortrag Bot Hrsg Deut Botan Ges (NC), 1, 157–166.

    Google Scholar 

  21. 21.

    Liu, J., Huang, J., Fan, K. W., Jiang, Y., Zhong, Y., Sun, Z., et al. (2010). Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101(22), 8658–8663.

    CAS  Article  Google Scholar 

  22. 22.

    Heredia-Arroyo, T., Wei, W., & Hu, B. (2010). Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology, 162(7), 1978–1995.

    CAS  Article  Google Scholar 

  23. 23.

    Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049.

    CAS  Article  Google Scholar 

  24. 24.

    Wang, Y., Rischer, H., Eriksen, N. T., & Wiebe, M. G. (2013). Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresource Technology, 144, 608–614.

    CAS  Article  Google Scholar 

  25. 25.

    Xie, T., Sun, Y., Du, K., Liang, B., Cheng, R., & Zhang, Y. (2012). Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresource Technology, 118, 235–242.

    CAS  Article  Google Scholar 

  26. 26.

    Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1), 29–36.

    CAS  Article  Google Scholar 

  27. 27.

    Cheng, Y., Lu, Y., Gao, C. F., & Wu, Q. Y. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy and Fuels, 23(8), 4166–4173.

    CAS  Article  Google Scholar 

  28. 28.

    Knothe, G. (2011). A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chemistry, 13(11), 3048–3065.

    CAS  Article  Google Scholar 

Download references


This project was predominantly funded by a Shenzhen Development and Reform Commission grant [2011] 835 and partially co-funded from start-up grant of Peking University Shenzhen Graduate School number 0068 to MD and National Research Foundation and Economic Development Board of Singapore (SPORE, COY-15-EWI-RCFSA/N197-1) to ZCJ. Authors would like to acknowledge Fei Zhang and Weilin Yi for their lab assistance.

Author information



Corresponding authors

Correspondence to Maurycy Daroch or Jay J. Cheng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Liu, Y., Daroch, M. et al. Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production. Appl Biochem Biotechnol 173, 1667–1679 (2014).

Download citation


  • Microalgae
  • Heterotrophic cultivation
  • Oil accumulation
  • Algal biodiesel