Applied Biochemistry and Biotechnology

, Volume 173, Issue 7, pp 1667–1679 | Cite as

Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production

  • Zongchao Jia
  • Ying Liu
  • Maurycy DarochEmail author
  • Shu Geng
  • Jay J. ChengEmail author


This article presents a study on screening of microalgal strains from the Peking University Algae Collection and heterotrophic cultivation for biodiesel production of a selected microalgal strain. Among 89 strains, only five were capable of growing under heterotrophic conditions in liquid cultures and Chlorella sp. PKUAC 102 was found the best for the production of heterotrophic algal biodiesel. Composition of the growth medium was optimised using response surface methodology and optimised growth conditions were successfully used for cultivation of the strain in a fermentor. Conversion of algal lipids to fatty acid methyl esters (FAMEs) showed that the lipid profile of the heterotrophically cultivated Chlorella sp. PKUAC 102 contains fatty acids suitable for biodiesel production.


Microalgae Heterotrophic cultivation Oil accumulation Algal biodiesel 



Peking University Algae Collection


Fatty acid methyl esters


Response surface methodology



This project was predominantly funded by a Shenzhen Development and Reform Commission grant [2011] 835 and partially co-funded from start-up grant of Peking University Shenzhen Graduate School number 0068 to MD and National Research Foundation and Economic Development Board of Singapore (SPORE, COY-15-EWI-RCFSA/N197-1) to ZCJ. Authors would like to acknowledge Fei Zhang and Weilin Yi for their lab assistance.


  1. 1.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.CrossRefGoogle Scholar
  2. 2.
    Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  3. 3.
    Daroch, M., Geng, S., & Wang, G. (2013). Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371–1381.CrossRefGoogle Scholar
  4. 4.
    Grobbelaar, J. U. (2010). Microalgal biomass production: challenges and realities. Photosynthesis Research, 106(1–2), 135–144.CrossRefGoogle Scholar
  5. 5.
    Borowitzka, M., & Moheimani, N. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change, 18(1), 13–25.CrossRefGoogle Scholar
  6. 6.
    Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868.CrossRefGoogle Scholar
  7. 7.
    Daroch, M., Shao, C., Liu, Y., Geng, S., & Cheng, J. J. (2013). Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 146, 192–199.CrossRefGoogle Scholar
  8. 8.
    Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.CrossRefGoogle Scholar
  9. 9.
    Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermentors. Journal of Biotechnology, 126(4), 499–507.CrossRefGoogle Scholar
  10. 10.
    Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764–771.CrossRefGoogle Scholar
  11. 11.
    Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRefGoogle Scholar
  12. 12.
    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.CrossRefGoogle Scholar
  13. 13.
    Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2010). Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Applied Biochemistry and Biotechnology, 160(6), 1674–1684.CrossRefGoogle Scholar
  14. 14.
    Cheng, K.-C., Ren, M., & Ogden, K. L. (2013). Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250. Bioresource Technology, 128, 44–48.CrossRefGoogle Scholar
  15. 15.
    Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 45(1), 11–36.CrossRefGoogle Scholar
  16. 16.
    Guo, H., Daroch, M., Liu, L., Qiu, G., Geng, S., & Wang, G. (2013). Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresource Technology, 127, 422–428.CrossRefGoogle Scholar
  17. 17.
    Shao, C., Liu, Y., Daroch, M., Geng, S., Xu, N., & Cheng, J. J. (2013). Isolation and identification of microalgae in Shenzhen Bay with molecular biotechnology. Guangdong Agricultural Sciences, 13, 135–138 (in chinese).Google Scholar
  18. 18.
    Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171–205.Google Scholar
  19. 19.
    Johnson, M. B., & Wen, Z. Y. (2009). Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy and Fuels, 23, 5179–5183.CrossRefGoogle Scholar
  20. 20.
    Kuhl, A. (1962). Zur physiologie der Speicherung Kondensierter anorganischer Phosphate in Chlorella. Vortrag Bot Hrsg Deut Botan Ges (NC), 1, 157–166.Google Scholar
  21. 21.
    Liu, J., Huang, J., Fan, K. W., Jiang, Y., Zhong, Y., Sun, Z., et al. (2010). Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101(22), 8658–8663.CrossRefGoogle Scholar
  22. 22.
    Heredia-Arroyo, T., Wei, W., & Hu, B. (2010). Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Applied Biochemistry and Biotechnology, 162(7), 1978–1995.CrossRefGoogle Scholar
  23. 23.
    Liang, Y., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31(7), 1043–1049.CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Rischer, H., Eriksen, N. T., & Wiebe, M. G. (2013). Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresource Technology, 144, 608–614.CrossRefGoogle Scholar
  25. 25.
    Xie, T., Sun, Y., Du, K., Liang, B., Cheng, R., & Zhang, Y. (2012). Optimization of heterotrophic cultivation of Chlorella sp. for oil production. Bioresource Technology, 118, 235–242.CrossRefGoogle Scholar
  26. 26.
    Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1), 29–36.CrossRefGoogle Scholar
  27. 27.
    Cheng, Y., Lu, Y., Gao, C. F., & Wu, Q. Y. (2009). Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy and Fuels, 23(8), 4166–4173.CrossRefGoogle Scholar
  28. 28.
    Knothe, G. (2011). A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform? Green Chemistry, 13(11), 3048–3065.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Shenzhen Engineering Laboratory for Algal Biofuel Technology Development and Application, School of Environment and EnergyPeking University-Shenzhen Graduate SchoolShenzhenChina
  2. 2.Department of Biological and Agricultural EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Plant SciencesUniversity of California, DavisDavisUSA

Personalised recommendations