Skip to main content
Log in

Gene Cloning, Expression, and Characterization of an Exo-inulinase from Paenibacillus polymyxa ZJ-9

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An inulinase-producing strain, Paenibacillus polymyxa ZJ-9, was isolated from natural sources to produce R,R-2,3-butanediol via one-step fermentation of raw inulin extracted from Jerusalem artichoke tubers. The inulinase gene from P. polymyxa ZJ-9 was cloned and overexpressed in Escherichia coli BL21 (DE3), and the purified recombinant inulinase was estimated to be approximately 56 kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and gel filtration chromatography. This result suggests that the active form of the inulinase is probably a monomer. Terminal hydrolysis fructose units from the inulin indicate that enzymes are exo-inulinase. The purified recombinant enzyme showed maximum activity at 25 °C and pH 6.0, which indicate its extreme suitability for industrial applications. Zn2+, Fe2+, and Mg2+ stimulated the activity of the purified enzyme, whereas Co2+, Cu2+, and Ni2+ inhibited enzyme activity. The K m and V max values for inulin hydrolysis were 1.72 mM and 21.69 μmol min−1 mg−1 protein, respectively. The same parameters toward sucrose were 41.09 mM and 78.7 μmol min−1 mg−1 protein, respectively. Considering its substrate specificity and other enzymatic characteristics, we believe that this inulinase gene from P. polymyxa ZJ-9 could be transformed into other special bacterial strains to allow inulin conversion to other biochemicals and bioenergy through one-step fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, J. M., Zhang, T., Chi, Z., Liu, G. L., & Chi, Z. M. (2011). 18S rDNA integration of the exo-inulinase gene into chromosomes of the high ethanol producing yeast Saccharomyces sp. W0 for direct conversion of inulin to bioethanol. Biomass and Bioenergy, 35, 3032–3039.

    Article  CAS  Google Scholar 

  2. Li, S. Z., & Chan-Halbrendt, C. (2009). Ethanol production in (the) People’s Republic of China: potential and technologies. Applied Energy, 86, S162–169.

    Article  CAS  Google Scholar 

  3. Kwon, H. J., Jeon, S. J., You, D. J., Kim, K. H., Jeong, Y. K., Kim, Y. H., Kim, Y. M., & Kim, B. W. (2003). Cloning and characterization of an exoinulinase from Bacillus polymyxa. Biotechnology Letters, 25, 155–159.

    Article  CAS  Google Scholar 

  4. Vandamme, E. J., & Derycke, D. G. (1983). Microbial inulinases: fermentation process, properties and applications. Advances in Applied Microbiology, 29, 139–176.

    Article  CAS  Google Scholar 

  5. Neagu, C., & Bahrim, G. (2011). Inulinases—a versatile tool for biotechnology. Innovative Romanian Food Biotechnology, 9, 1–11.

    CAS  Google Scholar 

  6. Chi, Z. M., Zhang, T., Cao, T. S., Liu, X. Y., Cui, W., & Zhao, C. H. (2011). Biotechnological potential of inulin for bioprocesses. Bioresource Technology, 102, 4295–4303.

    Article  CAS  Google Scholar 

  7. Goosen, C., & Dijkhuizen, L. (2008). Exo-inulinase of Aspergillus niger N402: a hydrolytic enzyme with significant transfructosylating activity. Biocatalysis and Biotransformation, 26, 49–58.

    Article  CAS  Google Scholar 

  8. Kango, N., & Jain, S. C. (2011). Production and properties of microbial inulinases: recent advances. Food Biotechnology, 25, 165–212.

    Article  CAS  Google Scholar 

  9. Singh, P., & Gill, P. K. (2006). Production of inulinases: recent advances. Food Technology Biotechnology, 44(2), 151–162.

    CAS  Google Scholar 

  10. Sun, L. H., Wang, X. D., Dai, J. Y., & Xiu, Z. L. (2009). Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 82, 847–852.

    Article  CAS  Google Scholar 

  11. Celińska, E., & Grajek, W. (2009). Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnology Advances, 27, 715–725.

    Article  Google Scholar 

  12. Gao, J., Xu, H., Li, Q. J., Feng, X. H., & Li, S. (2010). Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresource Technology, 101, 7076–7082.

    Article  CAS  Google Scholar 

  13. Ui, S., Masuda, H., & Muraki, H. (1984). Laboratory-scale production of acetoin isomers (D(-) and L(+)) by bacterial fermentation. Journal Fermentation Technology, 62, 151–156.

    CAS  Google Scholar 

  14. Fergus, G. P., Michael, G., & Carole, T. (1988). A numerical classification of the genus Bacillus. Journal of General Microbiology, 134, 1847–1882.

    Google Scholar 

  15. Holt, J. G., Sneath, P. H. A., Mair, N. S., & Sharpe, M. E. (1986). 9th ed., Bergey’s manual of systematic bacteriology, vol. 2, 9th ed (pp. 1104–1139). Baltimore: Williams & Wilkins.

    Google Scholar 

  16. Zhou, X. L., Shen, W., Rao, Z. M., Wang, Z. X., & Zhuge, J. (2004). A rapid method for preparation of fungal chromosome DNA. Weishengwu Xue Tongbao, 31, 89–92.

    CAS  Google Scholar 

  17. Xu, Z., Qing, Y. J., Li, S., Feng, X. H., Xu, H., & Ouyang, P. K. (2011). A novel L-arabinose isomerase from Lactobacillus fermentum CGMCC2921 for D-tagatose production: gene cloning, purification and characterization. Journal of Molecular Catalysis B: Enzymatic, 70, 1–7.

    Article  CAS  Google Scholar 

  18. Xiao, R., Tanida, M., & Takao, S. (1988). Inulinase from Chrysosporium pannorum. Journal Fermentation Technology, 66, 553–558.

    Article  CAS  Google Scholar 

  19. Nguyen, Q. D., Mattes, F., Hoschke, A., Rezessy-Szabo, J., & Bhat, M. K. (1999). Production, purification and identification of fructooligosaccharides produced by β-fructofuranosidase from Aspergillus niger IMI 303386. Biotechnology Letters, 21, 183–186.

    Article  CAS  Google Scholar 

  20. Szambelan, K., Nowak, J., & Czarnecki, Z. (2004). Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnology Letters, 26, 845–848.

    Article  CAS  Google Scholar 

  21. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  22. Yuan, B., Hu, N., Sun, J., Wang, S. A., & Li, F. L. (2012). Purification and characterization of a novel extracellular inulinase from a new yeast species Candida kutaonensis sp. nov. KRF1T. Applied Microbiology and Biotechnology, 96, 1517–1526.

    Article  CAS  Google Scholar 

  23. Liebl, W., Feil, R., Gabelsberger, J., Kellermann, J., & Schleifer, K. H. (1992). Purification and characterization of a novel thermostable 4-α-glucanotransferase of Thermotoga maritima cloned in Es-cherichia coli. European Journal of Biochemistry, 207, 81–88.

    Article  CAS  Google Scholar 

  24. Reddy, V. A., & Maley, F. (1990). Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. The Journal of Biological Chemistry, 265, 10817–10820.

    CAS  Google Scholar 

  25. Nagem, R. A., Rojas, A. L., Golubev, A. M., Korneeva, O. S., Enevskava, E. V., Kulminskava, A. A., Neustroev, K. N., & Polikarpov, I. (2004). Crystal structure of exo-inulinase from Aspergillus awamori: The enzyme fold and structural determinants of substrate recognition. Journal of Molecular Biology, 344, 471–480.

    Article  CAS  Google Scholar 

  26. Martin, I., Debarbouille, M., Ferrari, E., Klier, A., & Rapoport, G. (1987). Characterization of the levanase gene of Bacillus subtilis which shows homology to yeast invertase. Molecular Genetics and Genomics, 208, 177–184.

    CAS  Google Scholar 

  27. Gunasekaran, P., Karunakaran, T., Cami, B., Mukundan, A. G., Preziosi, L., & Baratti, J. (1990). Cloning and sequencing of the sacA gene: characterization of a sucrase from Zymomonas mobilis. Journal of Bacteriology, 172, 6727–6735.

    CAS  Google Scholar 

  28. Pandey, A., Soccol, C. R., & Fontana, J. D. (1999). Recent developments in microbial inulinases. Applied Biochemistry and Biotechnology, 81, 35–52.

    Article  CAS  Google Scholar 

  29. Rouwenhorst, R. J., & Visser, L. E. (1988). Production, distribution and kinetic properties of inulinase in continuous cultures of Kluyveromyces marxianus CBS6556. Applied and Environmental Microbiology, 54, 1311–1137.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant 21376203), the Natural Science Foundation of Jiangsu Province (Grant BK2010290), the Promotion Program of Achievements in Scientific Research for Industrial Production of Higher Education of Jiangsu Province (Grant JHB2011-54), Qinglan Project of Higher Education of Jiangsu Province, Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents of Jiangsu Province, and Jiangsu Agricultural Key Technology Research and Development Program (Grant BE2012394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao.

Additional information

Jian Gao and You-Yong Xu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Xu, YY., Yang, HM. et al. Gene Cloning, Expression, and Characterization of an Exo-inulinase from Paenibacillus polymyxa ZJ-9. Appl Biochem Biotechnol 173, 1419–1430 (2014). https://doi.org/10.1007/s12010-014-0950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0950-y

Keywords

Navigation